889 research outputs found

    Learning from networked examples

    Get PDF
    Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing significantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities

    The asymptotic induced matching number of hypergraphs: balanced binary strings

    Get PDF
    We compute the asymptotic induced matching number of the kk-partite kk-uniform hypergraphs whose edges are the kk-bit strings of Hamming weight k/2k/2, for any large enough even number kk. Our lower bound relies on the higher-order extension of the well-known Coppersmith-Winograd method from algebraic complexity theory, which was proven by Christandl, Vrana and Zuiddam. Our result is motivated by the study of the power of this method as well as of the power of the Strassen support functionals (which provide upper bounds on the asymptotic induced matching number), and the connections to questions in tensor theory, quantum information theory and theoretical computer science. Phrased in the language of tensors, as a direct consequence of our result, we determine the asymptotic subrank of any tensor with support given by the aforementioned hypergraphs. In the context of quantum information theory, our result amounts to an asymptotically optimal kk-party stochastic local operations and classical communication (slocc) protocol for the problem of distilling GHZ-type entanglement from a subfamily of Dicke-type entanglement

    Finite reflection groups and graph norms

    Get PDF
    Given a graph HH on vertex set {1,2,⋯ ,n}\{1,2,\cdots, n\} and a function f:[0,1]2→Rf:[0,1]^2 \rightarrow \mathbb{R}, define \begin{align*} \|f\|_{H}:=\left\vert\int \prod_{ij\in E(H)}f(x_i,x_j)d\mu^{|V(H)|}\right\vert^{1/|E(H)|}, \end{align*} where μ\mu is the Lebesgue measure on [0,1][0,1]. We say that HH is norming if ∥⋅∥H\|\cdot\|_H is a semi-norm. A similar notion ∥⋅∥r(H)\|\cdot\|_{r(H)} is defined by ∥f∥r(H):=∥∣f∣∥H\|f\|_{r(H)}:=\||f|\|_{H} and HH is said to be weakly norming if ∥⋅∥r(H)\|\cdot\|_{r(H)} is a norm. Classical results show that weakly norming graphs are necessarily bipartite. In the other direction, Hatami showed that even cycles, complete bipartite graphs, and hypercubes are all weakly norming. We demonstrate that any graph whose edges percolate in an appropriate way under the action of a certain natural family of automorphisms is weakly norming. This result includes all previously known examples of weakly norming graphs, but also allows us to identify a much broader class arising from finite reflection groups. We include several applications of our results. In particular, we define and compare a number of generalisations of Gowers' octahedral norms and we prove some new instances of Sidorenko's conjecture.Comment: 29 page

    Strong Converse for Identification via Quantum Channels

    Full text link
    In this paper we present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede's recently discovered appoach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking values in selfadjoint operators on a Hilbert space. This theory is presented separately in an appendix, and we illustrate it by showing its application to quantum generalizations of classical hypergraph covering problems.Comment: 11 pages, LaTeX2e, requires IEEEtran2e.cls. Some errors and omissions corrected, references update
    • …
    corecore