9 research outputs found

    Stable Matching based Resource Allocation for Service Provider\u27s Revenue Maximization in 5G Networks

    Get PDF
    5G technology is foreseen to have a heterogeneous architecture with the various computational capability, and radio-enabled service providers (SPs) and service requesters (SRs), working altogether in a cellular model. However, the coexistence of heterogeneous network model spawns several research challenges such as diverse SRs with uneven service deadlines, interference management, and revenue maximization of non-uniform computational capacities enabled SPs. Thus, we propose a coexistence of heterogeneous SPs and SRs enabled cellular 5G network and formulate the SPs\u27 revenue maximization via resource allocation, considering different kinds of interference, data rate, and latency altogether as an optimization problem and further propose a distributed many-to-many stable matching-based solution. Moreover, we offer an adaptive stable matching based distributed algorithm to solve the formulated problem in a dynamic network model. Through extensive theoretical and simulation analysis, we have shown the effect of different parameters on the resource allocation objectives and achieves 94 percent of optimum network performance

    Multi-Dimensional Resource Orchestration in Vehicular Edge Networks

    Get PDF
    In the era of autonomous vehicles, the advanced technologies of connected vehicle lead to the development of driving-related applications to meet the stringent safety requirements and the infotainment applications to improve passenger experience. Newly developed vehicular applications require high-volume data transmission, accurate sensing data collection, and reliable interaction, imposing substantial constrains on vehicular networks that solely rely on cellular networks to fetch data from the Internet and on-board processors to make driving decisions. To enhance multifarious vehicular applications, Heterogeneous Vehicular Networks (HVNets) have been proposed, in which edge nodes, including base stations and roadside units, can provide network connections, resulting in significantly reduced vehicular communication cost. In addition, caching servers are equipped at the edge nodes, to further alleviate the communication load for backhaul links and reduce data downloading delay. Hence, we aim to orchestrate the multi-dimensional resources, including communication, caching, and sensing resources, in the complex and dynamic vehicular environment to enhance vehicular edge network performance. The main technical issues are: 1) to accommodate the delivery services for both location-based and popular contents, the scheme of caching contents at edge servers should be devised, considering the cooperation of caching servers at different edge nodes, the mobility of vehicles, and the differential requirements of content downloading services; 2) to support the safety message exchange and collective perception services for vehicles, communication and sensing resources are jointly allocated, the decisions of which are coupled due to the resource sharing among different services and neighboring vehicles; and 3) for interaction-intensive service provisioning, e.g., trajectory design, the forwarding resources in core networks are allocated to achieve delay-sensitive packet transmissions between vehicles and management controllers, ensuring the high-quality interactivity. In this thesis, we design the multi-dimensional resource orchestration schemes in the edge assisted HVNets to address the three technical issues. Firstly, we design a cooperative edge caching scheme to support various vehicular content downloading services, which allows vehicles to fetch one content from multiple caching servers cooperatively. In particular, we consider two types of vehicular content requests, i.e., location-based and popular contents, with different delay requirements. Both types of contents are encoded according to fountain code and cooperatively cached at multiple servers. The proposed scheme can be optimized by finding an optimal cooperative content placement that determines the placing locations and proportions for all contents. To this end, we analyze the upper bound proportion of content caching at a single server and provide the respective theoretical analysis of transmission delay and service cost (including content caching and transmission cost) for both types of contents. We then formulate an optimization problem of cooperative content placement to minimize the overall transmission delay and service cost. As the problem is a multi-objective multi-dimensional multi-choice knapsack one, which is proved to be NP-hard, we devise an ant colony optimization-based scheme to solve the problem and achieve a near-optimal solution. Simulation results are provided to validate the performance of the proposed scheme, including its convergence and optimality of caching, while guaranteeing low transmission delay and service cost. Secondly, to support the vehicular safety message transmissions, we propose a two-level adaptive resource allocation (TARA) framework. In particular, three types of safety message are considered in urban vehicular networks, i.e., the event-triggered message for urgent condition warning, the periodic message for vehicular status notification, and the message for environmental perception. Roadside units are deployed for network management, and thus messages can be transmitted through either vehicle-to-infrastructure or vehicle-to-vehicle connections. To satisfy the requirements of different message transmissions, the proposed TARA framework consists of a group-level resource reservation module and a vehicle-level resource allocation module. Particularly, the resource reservation module is designed to allocate resources to support different types of message transmission for each vehicle group at the first level, and the group is formed by a set of neighboring vehicles. To learn the implicit relation between the resource demand and message transmission requests, a supervised learning model is devised in the resource reservation module, where to obtain the training data we further propose a sequential resource allocation (SRA) scheme. Based on historical network information, the SRA scheme offline optimizes the allocation of sensing resources (i.e., choosing vehicles to provide perception data) and communication resources. With the resource reservation result for each group, the vehicle-level resource allocation module is then devised to distribute specific resources for each vehicle to satisfy the differential requirements in real time. Extensive simulation results are provided to demonstrate the effectiveness of the proposed TARA framework in terms of the high successful reception ratio and low latency for message transmissions, and the high quality of collective environmental perception. Thirdly, we investigate forwarding resource sharing scheme to support interaction intensive services in HVNets, especially for the delay-sensitive packet transmission between vehicles and management controllers. A learning-based proactive resource sharing scheme is proposed for core communication networks, where the available forwarding resources at a switch are proactively allocated to the traffic flows in order to maximize the efficiency of resource utilization with delay satisfaction. The resource sharing scheme consists of two joint modules: estimation of resource demands and allocation of available resources. For service provisioning, resource demand of each traffic flow is estimated based on the predicted packet arrival rate. Considering the distinct features of each traffic flow, a linear regression scheme is developed for resource demand estimation, utilizing the mapping relation between traffic flow status and required resources, upon which a network switch makes decision on allocating available resources for delay satisfaction and efficient resource utilization. To learn the implicit relation between the allocated resources and delay, a multi-armed bandit learning-based resource sharing scheme is proposed, which enables fast resource sharing adjustment to traffic arrival dynamics. The proposed scheme is proved to be asymptotically approaching the optimal strategy, with polynomial time complexity. Extensive simulation results are presented to demonstrate the effectiveness of the proposed resource sharing scheme in terms of delay satisfaction, traffic adaptiveness, and resource sharing gain. In summary, we have investigated the cooperative caching placement for content downloading services, joint communication and sensing resource allocation for safety message transmissions, and forwarding resource sharing scheme in core networks for interaction intensive services. The schemes developed in the thesis should provide practical and efficient solutions to manage the multi-dimensional resources in vehicular networks

    Content Caching and Delivery in Heterogeneous Vehicular Networks

    Get PDF
    Connected and automated vehicles (CAVs), which enable information exchange and content delivery in real time, are expected to revolutionize current transportation systems for better driving safety, traffic efficiency, and environmental sustainability. However, the emerging CAV applications such as content delivery pose stringent requirements on latency, throughput, reliability, and global connectivity. The current wireless networks face significant challenges to satisfy the requirements due to scarce radio spectrum resources, inflexibility to dynamic traffic demands, and geographic-constrained fixed infrastructure deployment. To empower multifarious CAV content delivery, heterogeneous vehicular networks (HetVNets), which integrate the terrestrial networks with aerial networks formed by unmanned aerial vehicles (UAVs) and space networks constituting of low Earth orbit (LEO) satellites, can guarantee reliable, flexible, cost-effective, and globally seamless service provisioning. In addition, edge caching is a promising solution to facilitate content delivery by caching popular files in the HetVNet access points (APs) to relieve the backhaul traffic with a lower delivery delay. The main technical issues are: 1) to fully reveal the potential of HetVNets for content delivery performance enhancement, content caching scheme design in HetVNets should jointly consider network characteristics, vehicle mobility patterns, content popularity, and APs’ caching capacities; 2) to fully exploit the controllable mobility and agility of UAVs to support dynamic vehicular content demands, the caching scheme and trajectory design for UAVs should be jointly optimized, which has not been well addressed due to their intricate inter-coupling relationships; and 3) for caching-based content delivery in HetVNets, a cooperative content delivery scheme should be designed to enable the cooperation among different network segments with ingenious utilization of heterogeneous network resources. In this thesis, we design the content caching and delivery schemes in the caching-enabled HetVNet to address the three technical issues. First, we study the content caching in HetVNets with fixed terrestrial APs including cellular base stations (CBSs), Wi-Fi roadside units (RSUs), and TV white space (TVWS) stations. To characterize the intermittent network connection caused by limited network coverage and high vehicle mobility, we establish an on-off model with service interruptions to describe the vehicular content delivery process. Content coding then is leveraged to resist the impact of unstable network connections and enhance caching efficiency. By jointly considering file characteristics and network conditions, the content placement is formulated as an integer linear programming (ILP) problem. Adopting the idea of the student admission model, the ILP problem is then transformed into a many-to-one matching problem between content files and HetVNet APs and solved by our proposed stable-matching-based caching scheme. Simulation results demonstrate that the proposed scheme can achieve near-optimal performances in terms of delivery delay and offloading ratio with a low complexity. Second, UAV-aided caching is considered to assist vehicular content delivery in aerial-ground vehicular networks (AGVN) and a joint caching and trajectory optimization (JCTO) problem is investigated to jointly optimize content caching, content delivery, and UAV trajectory. To enable real-time decision-making in highly dynamic vehicular networks, we propose a deep supervised learning scheme to solve the JCTO problem. Specifically, we first devise a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content caching policy, we design a time-based graph decomposition method to jointly optimize content delivery and UAV trajectory, with which we then leverage the particle swarm optimization algorithm to optimize the content caching. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make online decisions. With the CNN-based model, a function mapping the input network information to output decisions can be intelligently learnt to make timely inferences. Extensive trace-driven experiments are conducted to demonstrate the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model. Third, we investigate caching-assisted cooperative content delivery in space-air-ground integrated vehicular networks (SAGVNs), where vehicular content requests can be cooperatively served by multiple APs in space, aerial, and terrestrial networks. In specific, a joint optimization problem of vehicle-to-AP association, bandwidth allocation, and content delivery ratio, referred to as the ABC problem, is formulated to minimize the overall content delivery delay while satisfying vehicular quality-of-service (QoS) requirements. To address the tightly-coupled optimization variables, we propose a load- and mobility-aware ABC (LMA-ABC) scheme to solve the joint optimization problem as follows. We first decompose the ABC problem to optimize the content delivery ratio. Then the impact of bandwidth allocation on the achievable delay performance is analyzed, and an effect of diminishing delay performance gain is revealed. Based on the analysis results, the LMA-ABC scheme is designed with the consideration of user fairness, load balancing, and vehicle mobility. Simulation results demonstrate that the proposed LMA-ABC scheme can significantly reduce the cooperative content delivery delay compared to the benchmark schemes. In summary, we have investigated the content caching in terrestrial networks with fixed APs, joint caching and trajectory optimization in the AGVN, and caching-assisted cooperative content delivery in the SAGVN. The proposed schemes and theoretical results should provide useful guidelines for future research in the caching scheme design and efficient utilization of network resources in caching-enabled heterogeneous wireless networks

    Design and analysis of network coding schemes for efficient fronthaul offloading of fog-radio access networks

    Full text link
    In the era of the Internet of Things (IoT), everything will be connected. Smart homes and cities, connected cars, smart agriculture, wearable technologies, smart healthcare, smart sport, and fitness are all becoming a reality. However, the current cloud architecture cannot manage the tremendous number of connected devices and skyrocketing data traffic while providing the speeds promised by 5G and beyond. Centralised cloud data centres are physically too far from where the data originate (edge of the network), inevitably leading to data transmission speeds that are too slow for delay-sensitive applications. Thus, researchers have proposed fog architecture as a solution to the ever-increasing number of connected devices and data traffic. The main idea of fog architecture is to bring content physically closer to end users, thus reducing data transmission times. This thesis considers a type of fog architecture in which smart end devices have storage and processing capabilities and can communicate and collaborate with each other. The major goal of this thesis is to develop methods of efficiently governing communication and collaboration between smart end devices so that their requests to upper network layers are minimised. This is achieved by incorporating principles from graph theory, network coding and machine learning to model the problem and design efficient network-coded scheduling algorithms to further enhance achieved performance. By maximising end users' self-sufficiency, the load on the system is decreased and its capacity increased. This will allow the central processing unit to manage more devices which is vital, given that more than 29 billion devices will connect to the infrastructure by 2023 \cite{Cisco1823}. Specifically, given that the limitations of the smart end devices and the system in general lead to various communication conflicts, a novel network coding graph is developed that takes into account all possible conflicts and enables the search for an efficient feasible solution. The thesis designs heuristic algorithms that search for the solution over the novel network coding graph, investigates the complexity of the proposed algorithms, and shows the offloading strategy's asymptotic optimality. Although the main aim of this work is to decrease the involvement of upper fog layers in serving smart end devices, it also takes into account how much energy end devices would use during collaborations. Unfortunately, a higher system capacity comes at the price of more energy spent by smart end devices; thus, service providers' interests and end users' interests are conflicting. Finally, this thesis investigates how multihop communication between end devices influences the offloading of upper fog layers. Smart end devices are equipped with machine learning capabilities that allow them to find efficient paths to their peers, further improving offloading. In conclusion, the work in this thesis shows that by smartly designing and scheduling communication between end devices, it is possible to significantly reduce the load on the system, increase its capacity and achieve fast transmissions between end devices, allowing them to run latency-critical applications

    Resource Management for Cellular-Assisted Device-to-Device (D2D) Communications

    Get PDF
    Device-to-Device (D2D) communication has become a promising candidate for future wireless communication systems to improve the system spectral efficiency, while reducing the latency and energy consumption of individual communication. With the assistance of cellular network, D2D communications can greatly reduce the transmit distance by utilizing the spatial dispersive nature of ever increasing user devices. Further, substantial spectrum reuse gain can be achieved due to the short transmit distance of D2D communication. It, however, significantly complicates the resource management and performance analysis of D2D communication underlaid cellular networks. Despite an increasing amount of academic attention and industrial interests, how to evaluate the system performance advantages of D2D communications with resource management remains largely unknown. On account of the proximity requirement of D2D communication, the resource management of D2D communication generally consists of admission access control and resource allocation. Resource allocation of cellular assisted D2D communications is very challenging when frequency reuse is considered among multiple D2D pairs within a cell, as intense inter D2D interference is difficult to tackle and generally causes extremely large amount of signaling overheads for channel state information (CSI) acquisition. Hence, the first part of this thesis is devoted to the resource allocation of cellular assisted D2D communication and the performance analysis. A novel resource allocation scheme for cellular assisted D2D communication is developed with low signaling overhead, while maintaining high spectral efficiency. By utilizing the spatial dispersive nature of D2D pairs, a geography-based sub-cell division strategy is proposed to group the D2D pairs into multiple disjoint clusters, and sub-cell resource allocation is performed independently for the D2D pairs within each sub-cell without the need of any prior knowledge of inter D2D interference. Under the proposed resource allocation scheme, tractable approximation for the inter D2D interference modeling is obtained and a computationally efficient expression for the average ergodic sum capacity of the cell is derived. The expression further allows us to obtain the optimal number of sub-cells that maximizes the average ergodic sum capacity of the cell. It is shown that with small CSI feedback, the system capacity/spectral efficiency can be improved significantly by adopting the proposed resource allocation scheme, especially in dense D2D deployment scenario. The investigation of use cases for cellular assisted D2D communication is another important topic which has direct effect on the performance evaluation of D2D communication. Thanks to the spatial dispersive nature of devices, D2D communication can be utilized to harvest the vast amount of the idle computation power and storage space distributed at the devices, which yields sufficient capacities for performing computation-intensive and latency-critical tasks. Therefore, the second part of this thesis focuses on the D2D communication assisted Mobile Edge Computing (MEC) network. The admission access control of D2D communication is determined by both disciplines of mobile computing and wireless communications. Specifically, the energy minimization problem in D2D assisted MEC networks is addressed with the latency constraint of each individual task and the computing resource constraint of each computing entity. The energy minimization problem is formed as a two-stage optimization problem. At the first stage, an initial feasibility problem is formed to maximize the number of executed tasks, and the global energy minimization problem is tackled in the second stage while maintaining the maximum number of executed tasks. Both of the optimization problems in two stages are NP-hard, therefore a low-complexity algorithm is developed for the initial feasibility problem with a supplementary algorithm further proposed for energy minimization. Simulation results demonstrate the near-optimal performance of the proposed algorithms and the fact that the number of executed tasks is greatly increased and the energy consumption per executed task is significantly reduced with the assistance of D2D communication in MEC networks, especially in dense user scenario

    Interference-aware multi-hop path selection for device-to-device communications in a cellular interference environment

    Get PDF
    Device-to-Device (D2D) communications is widely seen as an efficient network capacity scaling technology. The co-existence of D2D with conventional cellular (CC) transmissions causes unwanted interference. Existing techniques have focused on improving the throughput of D2D communications by optimising the radio resource management and power allocation. However, very little is understood about the impact of the route selection of the users and how optimal routing can reduce interference and improve the overall network capacity. In fact, traditional wisdom indicates that minimising the number of hops or the total path distance is preferable. Yet, when interference is considered, we show that this is not the case. In this paper, we show that by understanding the location of the user, an interference-aware routing algorithm can be devised. We propose an adaptive Interference-Aware-Routing (IAR) algorithm, that on average achieves a 30% increase in hop distance, but can improve the overall network capacity by 50% whilst only incurring a minor 2% degradation to the CC capacity. The analysis framework and the results open up new avenues of research in location-dependent optimization in wireless systems, which is particularly important for increasingly dense and semantic-aware deployments

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network
    corecore