793 research outputs found

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    On The Effect of Hyperedge Weights On Hypergraph Learning

    Full text link
    Hypergraph is a powerful representation in several computer vision, machine learning and pattern recognition problems. In the last decade, many researchers have been keen to develop different hypergraph models. In contrast, no much attention has been paid to the design of hyperedge weights. However, many studies on pairwise graphs show that the choice of edge weight can significantly influence the performances of such graph algorithms. We argue that this also applies to hypegraphs. In this paper, we empirically discuss the influence of hyperedge weight on hypegraph learning via proposing three novel hyperedge weights from the perspectives of geometry, multivariate statistical analysis and linear regression. Extensive experiments on ORL, COIL20, JAFFE, Sheffield, Scene15 and Caltech256 databases verify our hypothesis. Similar to graph learning, several representative hyperedge weighting schemes can be concluded by our experimental studies. Moreover, the experiments also demonstrate that the combinations of such weighting schemes and conventional hypergraph models can get very promising classification and clustering performances in comparison with some recent state-of-the-art algorithms

    Hypergraph Neural Networks

    Full text link
    In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data in real practice, we propose to incorporate such data structure in a hypergraph, which is more flexible on data modeling, especially when dealing with complex data. In this method, a hyperedge convolution operation is designed to handle the data correlation during representation learning. In this way, traditional hypergraph learning procedure can be conducted using hyperedge convolution operations efficiently. HGNN is able to learn the hidden layer representation considering the high-order data structure, which is a general framework considering the complex data correlations. We have conducted experiments on citation network classification and visual object recognition tasks and compared HGNN with graph convolutional networks and other traditional methods. Experimental results demonstrate that the proposed HGNN method outperforms recent state-of-the-art methods. We can also reveal from the results that the proposed HGNN is superior when dealing with multi-modal data compared with existing methods.Comment: Accepted in AAAI'201

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Learning Hypergraph-regularized Attribute Predictors

    Full text link
    We present a novel attribute learning framework named Hypergraph-based Attribute Predictor (HAP). In HAP, a hypergraph is leveraged to depict the attribute relations in the data. Then the attribute prediction problem is casted as a regularized hypergraph cut problem in which HAP jointly learns a collection of attribute projections from the feature space to a hypergraph embedding space aligned with the attribute space. The learned projections directly act as attribute classifiers (linear and kernelized). This formulation leads to a very efficient approach. By considering our model as a multi-graph cut task, our framework can flexibly incorporate other available information, in particular class label. We apply our approach to attribute prediction, Zero-shot and NN-shot learning tasks. The results on AWA, USAA and CUB databases demonstrate the value of our methods in comparison with the state-of-the-art approaches.Comment: This is an attribute learning paper accepted by CVPR 201
    • …
    corecore