435 research outputs found

    Hypergraph model of social tagging networks

    Full text link
    The past few years have witnessed the great success of a new family of paradigms, so-called folksonomy, which allows users to freely associate tags to resources and efficiently manage them. In order to uncover the underlying structures and user behaviors in folksonomy, in this paper, we propose an evolutionary hypergrah model to explain the emerging statistical properties. The present model introduces a novel mechanism that one can not only assign tags to resources, but also retrieve resources via collaborative tags. We then compare the model with a real-world dataset: \emph{Del.icio.us}. Indeed, the present model shows considerable agreement with the empirical data in following aspects: power-law hyperdegree distributions, negtive correlation between clustering coefficients and hyperdegrees, and small average distances. Furthermore, the model indicates that most tagging behaviors are motivated by labeling tags to resources, and tags play a significant role in effectively retrieving interesting resources and making acquaintance with congenial friends. The proposed model may shed some light on the in-depth understanding of the structure and function of folksonomy.Comment: 7 pages,7 figures, 32 reference

    Random hypergraphs and their applications

    Get PDF
    In the last few years we have witnessed the emergence, primarily in on-line communities, of new types of social networks that require for their representation more complex graph structures than have been employed in the past. One example is the folksonomy, a tripartite structure of users, resources, and tags -- labels collaboratively applied by the users to the resources in order to impart meaningful structure on an otherwise undifferentiated database. Here we propose a mathematical model of such tripartite structures which represents them as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the limit of large network size and we compare the results against observations of a real folksonomy, that of the on-line photography web site Flickr. We show that in some cases the model matches the properties of the observed network well, while in others there are significant differences, which we find to be attributable to the practice of multiple tagging, i.e., the application by a single user of many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Network Capacity Bound for Personalized PageRank in Multimodal Networks

    Full text link
    In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we introduce a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. we finally state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.Comment: 28 pages. arXiv admin note: text overlap with arXiv:1702.0373

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    • …
    corecore