30 research outputs found

    Stable Matching based Resource Allocation for Service Provider\u27s Revenue Maximization in 5G Networks

    Get PDF
    5G technology is foreseen to have a heterogeneous architecture with the various computational capability, and radio-enabled service providers (SPs) and service requesters (SRs), working altogether in a cellular model. However, the coexistence of heterogeneous network model spawns several research challenges such as diverse SRs with uneven service deadlines, interference management, and revenue maximization of non-uniform computational capacities enabled SPs. Thus, we propose a coexistence of heterogeneous SPs and SRs enabled cellular 5G network and formulate the SPs\u27 revenue maximization via resource allocation, considering different kinds of interference, data rate, and latency altogether as an optimization problem and further propose a distributed many-to-many stable matching-based solution. Moreover, we offer an adaptive stable matching based distributed algorithm to solve the formulated problem in a dynamic network model. Through extensive theoretical and simulation analysis, we have shown the effect of different parameters on the resource allocation objectives and achieves 94 percent of optimum network performance

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Energy-aware and adaptive fog storage mechanism with data replication ruled by spatio-temporal content popularity

    Get PDF
    Data traffic demand increases at a very fast pace in edge networking environments, with strict requisites on latency and throughput. To fulfil these requirements, among others, this paper proposes a fog storage system that incorporates mobile nodes as content providers. This fog storage system has a hybrid design because it does not only bring data closer to edge consumers but, as a novelty, it also incorporates in the system other relevant functional aspects. These novel aspects are the user data demand, the energy consumption, and the node distance. In this way, the decision whether to replicate data is based on an original edge service managed by an adaptive distance metric for node clustering. The adaptive distance is evaluated from several important system parameters like, distance from consumer to the data storage location, spatio-temporal data popularity, and the autonomy of each battery-powered node. Testbed results evidence that this flexible cluster-based proposal offers a more responsive data access to consumers, reduces core traffic, and depletes in a fair way the available battery energy of edge nodes.info:eu-repo/semantics/acceptedVersio

    Spectral and Energy Efficiency Maximization for Content-Centric C-RANs with Edge Caching

    Get PDF
    This paper aims to maximize the spectral and energy efficiencies of a content-centric cloud radio access network (C-RAN), where users requesting the same contents are grouped together. Data are transferred from a central baseband unit to multiple remote radio heads (RRHs) equipped with local caches. The RRHs then send the received data to each group's user. Both multicast and unicast schemes are considered for data transmission. We formulate mixed-integer nonlinear problems in which user association, RRH activation, data rate allocation, and signal precoding are jointly designed. These challenging problems are subject to minimum data rate requirements, limited fronthaul capacity, and maximum RRH transmit power. Employing successive convex quadratic programming, we propose iterative algorithms with guaranteed convergence to Fritz John solutions. Numerical results confirm that the proposed joint designs markedly improve the spectral and energy efficiencies of the considered content-centric C-RAN compared to benchmark schemes. Importantly, they show that unicasting outperforms multicasting in terms of spectral efficiency in both cache and cache-less scenarios. In terms of energy efficiency, multicasting is the best choice for the system without cache whereas unicasting is best for the system with cache. Finally, edge caching is shown to improve both spectral and energy efficiencies.This work is supported in part by an ECRHDR scholarship from The University of Newcastle, in part by the Australian Research Council Discovery Project grants DP170100939 and DP160101537

    Online edge caching and wireless delivery in fog-aided networks

    Get PDF
    Multimedia content is the significant fraction of transferred data over the wireless medium in the modern cellular and wireless communication networks. To improve the quality of experience perceived by users, one promising solution is to push the most popular contents as close as to users, also known as the edge of network. Storing content at the edge nodes (ENs) or base stations (BSs) is called caching . In Fog Radio Access Network (F-RAN), each EN is equipped with a cache as well as a fronthaul connection to the content server. Among the new design problems raised by the outlined scenarios, two key issues are addressed in this dissertation: 1) How to utilize cache and fronthaul resources while taking into account the wireless channel impairments; 2) How to incorporate the time-variability of popular set in the performance evaluation of F-RAN. These aspects are investigated by using information-theoretic models, obtaining fundamental insights that have been corroborated by various illustrative examples. To address point 1), two scenarios are investigated. First, a single-cell scenario with two transmitters is considered. A fog-aided small-cell BS as one of the transmitters and a cloud-aided macro-cell BS as the second transmitter collaborate with each other to send the requested content over a partially connected wireless channel. The intended and interference channels are modeled by erasure channels. Assuming a static set of popular contents, offline caching maps the library of files to cached contents stored at small-cell BS such that the cache capacity requirement is met. The delivery time per bit (DTB) is adopted as a measure of the coding latency, that is, the duration of the transmission block, required for reliable delivery. It is proved that optimal DTB is a linear decreasing function of cache capacity as well as inversely proportional with capacity of fronthaul link. In the second scenario, the same single-cell model is used with the only caveat that the set of popular files is time-varying. In this case, online caching maps the library of files to cached contents at small-cell BS. Thanks to availability of popular set at macro-BS, the DTB is finite and has upper and lower bounds which are functions of system resources i.e., cache and fronthaul link capacities. As for point 2), the model is comprised of an arbitrary number of ENs and users connected through an interference-limited wireless channel at high-SNR regime. All equally important ENs are benefited from cache capacity as well as fronthaul connection to the content server. The time-variability of popular set necessitates online caching to enable ENs keep track of changes in the popular set. The analysis is centered on the characterization of the long-term Normalized Delivery Time (NDT), which captures the temporal dependence of the coding latencies accrued across multiple time slots in the high-SNR regime. Online edge caching and delivery schemes based on reactive and proactive caching principles are investigated for both serial and pipelined transmission modes across fronthaul and edge segments. The outcome of analytical results provides a controversial view of contemporary research on the edge caching. It is proved that with a time-varying set of popular files, the capacity of fronthaul link between ENs and content server set a fundamental limit on the system performance. This is due to the fact that the original information source is content server and the only way to retrieve information is via fronthaul links. While edge caching can provide some gains in term of reduced latency, the gain diminishes as a result of the fact that the cached content is prone to be outdated with time-varying popularity
    corecore