46 research outputs found

    Min–Max Hyperellipsoidal Clustering for Anomaly Detection in Network Security

    Get PDF
    A novel hyperellipsoidal clustering technique is presented for an intrusion-detection system in network security. Hyperellipsoidal clusters toward maximum intracluster similarity and minimum intercluster similarity are generated from training data sets. The novelty of the technique lies in the fact that the parameters needed to construct higher order data models in general multivariate Gaussian functions are incrementally derived from the data sets using accretive processes. The technique is implemented in a feedforward neural network that uses a Gaussian radial basis function as the model generator. An evaluation based on the inclusiveness and exclusiveness of samples with respect to specific criteria is applied to accretively learn the output clusters of the neural network. One significant advantage of this is its ability to detect individual anomaly types that are hard to detect with other anomaly-detection schemes. Applying this technique, several feature subsets of the tcptrace network-connection records that give above 95% detection at false-positive rates below 5% were identified

    Incremental Local Linear Fuzzy Classifier in Fisher Space

    Get PDF
    Optimizing the antecedent part of neurofuzzy system is an active research topic, for which different approaches have been developed. However, current approaches typically suffer from high computational complexity or lack of ability to extract knowledge from a given set of training data. In this paper, we introduce a novel incremental training algorithm for the class of neurofuzzy systems that are structured based on local linear classifiers. Linear discriminant analysis is utilized to transform the data into a space in which linear discriminancy of training samples is maximized. The neurofuzzy classifier is then built in the transformed space, starting from the simplest form (a global linear classifier). If the overall performance of the classifier was not satisfactory, it would be iteratively refined by incorporating additional local classifiers. In addition, rule consequent parameters are optimized using a local least square approach. Our refinement strategy is motivated by LOLIMOT, which is a greedy partition algorithm for structure training and has been successfully applied in a number of identification problems. The proposed classifier is compared to several benchmark classifiers on a number of well-known datasets. The results prove the efficacy of the proposed classifier in achieving high performance while incurring low computational effort

    State-Space Quantization Design for the Suboptimal Control of Constrained Systems Using Neuromorphic Controllers

    Get PDF
    During the last few years there has been considerable interest in the use of trainable controllers based upon the use of neuron-like elements, with the expectation being that these controllers can be trained, with relatively little effort, to achieve good performance. However, good performance hinges on the ability of the neural net to generate a "good" control law even when the input does not belong to the training set, and it has been shown that neural-nets do not necessarily generalize well. It has been proposed that this problem can be solved by essentially quantizing the state-space and then using a neural-net to implement a table look-up procedure. However, there is little information on the effect of this quantization upon the controllability properties of the system. In this paper we address this problem by extending the theory of control of constrained systems to the case where the controls and measured states are restricted to finite or countably infinite sets. These results provide the theoretical framework for recently suggested neuromorphic controllers but they are also valuable for analyzing the controllability properties of computer-based control systems

    Analysis of clustering algorithms for spike sorting of multiunit extracellular recordings

    Get PDF
    Various techniques have been considered in the past to identify distinct spike shapes from mulitunit extracellular recording. These techniques involve adaptive filtering techniques or template matching techniques or hierarchical clustering techniques. In this investigation, we have used Principal Component Analysis followed by various clustering techniques to identify distinct spike shapes. The amplitude filter is used to separate spikes from background neuronal activity. The correlation matrix of the spike data is used to compute principal component wave forms. Each spike is thus represented by the coefficients of principal components. Then, We have used agglomorative hierarchical clustering algorithm to perform the initial clustering of the data set. The clustering results are then refined by the application of the Estimation Maximization Algorithm. The Bayesian Information Criteria(BIC) is used to find out best fit of the model to the data set

    Connectionist-Symbolic Machine Intelligence using Cellular Automata based Reservoir-Hyperdimensional Computing

    Full text link
    We introduce a novel framework of reservoir computing, that is capable of both connectionist machine intelligence and symbolic computation. Cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is capable of long short-term memory and it requires orders of magnitude less computation compared to Echo State Networks. We prove that cellular automaton reservoir holds a distributed representation of attribute statistics, which provides a more effective computation than local representation. It is possible to estimate the kernel for linear cellular automata via metric learning, that enables a much more efficient distance computation in support vector machine framework. Also, binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing.Comment: Corrected Typos. Responded some comments on section 8. Added appendix for details. Recurrent architecture emphasize

    Autoencoding with a classifier system

    Get PDF
    Autoencoders are data-specific compression algorithms learned automatically from examples. The predominant approach has been to construct single large global models that cover the domain. However, training and evaluating models of increasing size comes at the price of additional time and computational cost. Conditional computation, sparsity, and model pruning techniques can reduce these costs while maintaining performance. Learning classifier systems (LCS) are a framework for adaptively subdividing input spaces into an ensemble of simpler local approximations that together cover the domain. LCS perform conditional computation through the use of a population of individual gating/guarding components, each associated with a local approximation. This article explores the use of an LCS to adaptively decompose the input domain into a collection of small autoencoders where local solutions of different complexity may emerge. In addition to benefits in convergence time and computational cost, it is shown possible to reduce code size as well as the resulting decoder computational cost when compared with the global model equivalent

    Methods for Pattern Classification

    Get PDF
    corecore