52 research outputs found

    Type space functors and interpretations in positive logic

    Get PDF
    We construct a 2-equivalence CohTheoryop≃TypeSpaceFunc. Here CohTheory is the 2-category of positive theories and TypeSpaceFunc is the 2-category of type space functors. We give a precise definition of interpretations for positive logic, which will be the 1-cells in CohTheory. The 2-cells are definable homomorphisms. The 2-equivalence restricts to a duality of categories, making precise the philosophy that a theory is ‘the same’ as the collection of its type spaces (i.e. its type space functor). In characterising those functors that arise as type space functors, we find that they are specific instances of (coherent) hyperdoctrines. This connects two different schools of thought on the logical structure of a theory. The key ingredient, the Deligne completeness theorem, arises from topos theory, where positive theories have been studied under the name of coherent theories

    Closure Hyperdoctrines

    Get PDF
    (Pre)closure spaces are a generalization of topological spaces covering also the notion of neighbourhood in discrete structures, widely used to model and reason about spatial aspects of distributed systems. In this paper we present an abstract theoretical framework for the systematic investigation of the logical aspects of closure spaces. To this end, we introduce the notion of closure (hyper)doctrines, i.e. doctrines endowed with inflationary operators (and subject to suitable conditions). The generality and effectiveness of this concept is witnessed by many examples arising naturally from topological spaces, fuzzy sets, algebraic structures, coalgebras, and covering at once also known cases such as Kripke frames and probabilistic frames (i.e., Markov chains). By leveraging general categorical constructions, we provide axiomatisations and sound and complete semantics for various fragments of logics for closure operators. Hence, closure hyperdoctrines are useful both for refining and improving the theory of existing spatial logics, and for the definition of new spatial logics for new applications

    Proof-theoretic Semantics and Tactical Proof

    Full text link
    The use of logical systems for problem-solving may be as diverse as in proving theorems in mathematics or in figuring out how to meet up with a friend. In either case, the problem solving activity is captured by the search for an \emph{argument}, broadly conceived as a certificate for a solution to the problem. Crucially, for such a certificate to be a solution, it has be \emph{valid}, and what makes it valid is that they are well-constructed according to a notion of inference for the underlying logical system. We provide a general framework uniformly describing the use of logic as a mathematics of reasoning in the above sense. We use proof-theoretic validity in the Dummett-Prawitz tradition to define validity of arguments, and use the theory of tactical proof to relate arguments, inference, and search.Comment: submitte

    On Logical connectives and quantifiers as adjoint functors

    Get PDF
    This thesis deals with the issue of treating logical connectives, quantifiers and equality in categorical terms, by means of adjoint functors combined into the notion of hyperdoctrine, introduced by Francis William Lawvere in 1969. After proving the general Theorem of Soundness and Completeness for the intuitionistic predicate logic with equality with respect to hyperdoctrines, we formulate instances of such categorical models by using H-valued sets and Kleene realizability, in order to produce easily models and countermodels for logical formulas

    Hyperdoctrines and the Ontology of Stratified Semantics

    Get PDF
    I present a version of Kit Fine's stratified semantics for the logic RWQ and define a natural family of related structures called RW hyperdoctrines. After proving that RWQ is sound with respect to RW hyperdoctrines, we show how to construct, for each stratified model, a hyperdoctrine that verifies precisely the same sentences. Completeness of RWQ for hyperdoctrinal semantics then follows from completeness for stratified semantics, which is proved in an appendix. By examining the base category of RW hyperdoctrines, we find reason to be worried about the ontology of stratified models

    A General Framework for the Semantics of Type Theory

    Full text link
    We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-L\"{o}f type theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory
    • …
    corecore