404 research outputs found

    Hypercolumns for Object Segmentation and Fine-grained Localization

    Full text link
    Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as feature representation. However, the information in this layer may be too coarse to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds, we define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel. Using hypercolumns as pixel descriptors, we show results on three fine-grained localization tasks: simultaneous detection and segmentation[22], where we improve state-of-the-art from 49.7[22] mean AP^r to 60.0, keypoint localization, where we get a 3.3 point boost over[20] and part labeling, where we show a 6.6 point gain over a strong baseline.Comment: CVPR Camera read

    PARTICLE: Part Discovery and Contrastive Learning for Fine-grained Recognition

    Full text link
    We develop techniques for refining representations for fine-grained classification and segmentation tasks in a self-supervised manner. We find that fine-tuning methods based on instance-discriminative contrastive learning are not as effective, and posit that recognizing part-specific variations is crucial for fine-grained categorization. We present an iterative learning approach that incorporates part-centric equivariance and invariance objectives. First, pixel representations are clustered to discover parts. We analyze the representations from convolutional and vision transformer networks that are best suited for this task. Then, a part-centric learning step aggregates and contrasts representations of parts within an image. We show that this improves the performance on image classification and part segmentation tasks across datasets. For example, under a linear-evaluation scheme, the classification accuracy of a ResNet50 trained on ImageNet using DetCon, a self-supervised learning approach, improves from 35.4% to 42.0% on the Caltech-UCSD Birds, from 35.5% to 44.1% on the FGVC Aircraft, and from 29.7% to 37.4% on the Stanford Cars. We also observe significant gains in few-shot part segmentation tasks using the proposed technique, while instance-discriminative learning was not as effective. Smaller, yet consistent, improvements are also observed for stronger networks based on transformers

    Superpixel-based Semantic Segmentation Trained by Statistical Process Control

    Full text link
    Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and testing of these methods have a lot of redundant operations. To resolve this problem, the proposed network is trained and tested with only 0.37% of total pixels by superpixel-based sampling and largely reduced the complexity of upsampling calculation. The hypercolumn feature maps are constructed by pyramid module in combination with the convolution layers of the base network. Since the proposed method uses a very small number of sampled pixels, the end-to-end learning of the entire network is difficult with a common learning rate for all the layers. In order to resolve this problem, the learning rate after sampling is controlled by statistical process control (SPC) of gradients in each layer. The proposed method performs better than or equal to the conventional methods that use much more samples on Pascal Context, SUN-RGBD dataset.Comment: Accepted in British Machine Vision Conference (BMVC), 201
    • …
    corecore