682 research outputs found

    A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

    Get PDF
    Wireless networks and information traffic have grown exponentially over the last decade. Consequently, an increase in demand for radio spectrum frequency bandwidth has resulted. Recent studies have shown that with the current fixed spectrum allocation (FSA), radio frequency band utilization ranges from 15% to 85%. Therefore, there are spectrum holes that are not utilized all the time by the licensed users, and, thus the radio spectrum is inefficiently exploited. To solve the problem of scarcity and inefficient utilization of the spectrum resources, dynamic spectrum access has been proposed as a solution to enable sharing and using available frequency channels. With dynamic spectrum allocation (DSA), unlicensed users can access and use licensed, available channels when primary users are not transmitting. Cognitive Radio technology is one of the next generation technologies that will allow efficient utilization of spectrum resources by enabling DSA. However, dynamic spectrum allocation by a cognitive radio system comes with the challenges of accurately detecting and selecting the best channel based on the channelĆ¢s availability and quality of service. Therefore, the spectrum sensing and analysis processes of a cognitive radio system are essential to make accurate decisions. Different spectrum sensing techniques and channel selection schemes have been proposed. However, these techniques only consider the spectrum occupancy rate for selecting the best channel, which can lead to erroneous decisions. Other communication parameters, such as the Signal-to-Noise Ratio (SNR) should also be taken into account. Therefore, the spectrum decision-making process of a cognitive radio system must use techniques that consider spectrum occupancy and channel quality metrics to rank channels and select the best option. This thesis aims to develop a utility function based on spectrum occupancy and SNR measurements to model and rank the sensed channels. An evolutionary algorithm-based SNR estimation technique was developed, which enables adaptively varying key parameters of the existing Eigenvalue-based blind SNR estimation technique. The performance of the improved technique is compared to the existing technique. Results show the evolutionary algorithm-based estimation performing better than the existing technique. The utility-based channel ranking technique was developed by first defining channel utility function that takes into account SNR and spectrum occupancy. Different mathematical functions were investigated to appropriately model the utility of SNR and spectrum occupancy rate. A ranking table is provided with the utility values of the sensed channels and compared with the usual occupancy rate based channel ranking. According to the results, utility-based channel ranking provides a better scope of making an informed decision by considering both channel occupancy rate and SNR. In addition, the efficiency of several noise cancellation techniques was investigated. These techniques can be employed to get rid of the impact of noise on the received or sensed signals during spectrum sensing process of a cognitive radio system. Performance evaluation of these techniques was done using simulations and the results show that the evolutionary algorithm-based noise cancellation techniques, particle swarm optimization and genetic algorithm perform better than the regular gradient descent based technique, which is the least-mean-square algorithm

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Topology Optimization Applications on Engineering Structures

    Get PDF
    Over the years, several optimization techniques were widely used to find the optimum shape and size of engineering structures (trusses, frames, etc.) under different constraints (stress, displacement, buckling instability, kinematic stability, and natural frequency). But, most of them require continuous data set where, on the other hand, topology optimization (TO) can handle also discrete ones. Topology optimization has also allowed radical changes in geometry which concludes better designs. So, many researchers have studied on topology optimization by developing/using different methodologies. This study aims to classify these studies considering used methods and present new emerging application areas. It is believed that researchers will easily find the related studies with their work

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Estimation of CNC Grinding Process Parameters Using Different Neural Networks

    Get PDF
    Continuation of research on solving the problem of estimation of CNC grinding process parameters of multi-layer ceramics is presented in the paper. Heuristic analysis of the process was used to define the attributes of influence on the grinding process and the research model was set. For the problem of prediction - estimation of the grinding process parameters the following networks were used in experimental work: Modular Neural Network (MNN), Radial Basis Function Neural Network (RBFNN), General Regression Neural Network (GRNN) and Self-Organizing Map Neural Network (SOMNN). The experimental work, based on real data from the technological process was performed for the purpose of training and testing various architectures and algorithms of neural networks. In the architectures design process different rules of learning and transfer functions and other attributes were used. RMS error was used as a criterion for value evaluation and comparison of the realised neural networks and was compared with previous results obtained by Back-Propagation Neural Network (BPNN). In the validation phase the best results were obtained by Back-Propagation Neural Network (RMSE 12,43 %), Radial Basis Function Neural Network (RMSE 13,24 %,), Self-Organizing Map Neural Network (RMSE 13,38 %) and Modular Neural Network (RMSE 14,45 %). General Regression Neural Network (RMSE 21,78 %) gave the worst results

    Artificial Neural Network and its Applications in the Energy Sector ā€“ An Overview

    Get PDF
    In order to realize the goal of optimal use of energy sources and cleaner environment at a minimal cost, researchers; field professionals; and industrialists have identified the expediency of harnessing the computational benefits provided by artificial intelligence (AI) techniques. This article provides an overview of AI, chronological blueprints of the emergence of artificial neural networks (ANNs) and some of its applications in the energy sector. This short survey reveals that despite the initial hiccups at the developmental stages of ANNs, ANN has tremendously evolved, is still evolving and have been found to be effective in handling highly complex problems even in the areas of modeling, control, and optimization, to mention a few
    • ā€¦
    corecore