364 research outputs found

    Mean Field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and Fitzhugh-Nagumo neurons

    Full text link
    We derive the mean-field equations arising as the limit of a network of interacting spiking neurons, as the number of neurons goes to infinity. The neurons belong to a fixed number of populations and are represented either by the Hodgkin-Huxley model or by one of its simplified version, the Fitzhugh-Nagumo model. The synapses between neurons are either electrical or chemical. The network is assumed to be fully connected. The maximum conductances vary randomly. Under the condition that all neurons initial conditions are drawn independently from the same law that depends only on the population they belong to, we prove that a propagation of chaos phenomenon takes places, namely that in the mean-field limit, any finite number of neurons become independent and, within each population, have the same probability distribution. This probability distribution is solution of a set of implicit equations, either nonlinear stochastic differential equations resembling the McKean-Vlasov equations, or non-local partial differential equations resembling the McKean-Vlasov-Fokker- Planck equations. We prove the well-posedness of these equations, i.e. the existence and uniqueness of a solution. We also show the results of some preliminary numerical experiments that indicate that the mean-field equations are a good representation of the mean activity of a finite size network, even for modest sizes. These experiment also indicate that the McKean-Vlasov-Fokker- Planck equations may be a good way to understand the mean-field dynamics through, e.g., a bifurcation analysis.Comment: 55 pages, 9 figure

    Analysis of Nonlinear Noisy Integrate\&Fire Neuron Models: blow-up and steady states

    Full text link
    Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter

    Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids

    Full text link
    Numerical continuation methods for deterministic dynamical systems have been one of the most successful tools in applied dynamical systems theory. Continuation techniques have been employed in all branches of the natural sciences as well as in engineering to analyze ordinary, partial and delay differential equations. Here we show that the deterministic continuation algorithm for equilibrium points can be extended to track information about metastable equilibrium points of stochastic differential equations (SDEs). We stress that we do not develop a new technical tool but that we combine results and methods from probability theory, dynamical systems, numerical analysis, optimization and control theory into an algorithm that augments classical equilibrium continuation methods. In particular, we use ellipsoids defining regions of high concentration of sample paths. It is shown that these ellipsoids and the distances between them can be efficiently calculated using iterative methods that take advantage of the numerical continuation framework. We apply our method to a bistable neural competition model and a classical predator-prey system. Furthermore, we show how global assumptions on the flow can be incorporated - if they are available - by relating numerical continuation, Kramers' formula and Rayleigh iteration.Comment: 29 pages, 7 figures [Fig.7 reduced in quality due to arXiv size restrictions]; v2 - added Section 9 on Kramers' formula, additional computations, corrected typos, improved explanation

    Adaptive Parameter Selection for Deep Brain Stimulation in Parkinson’s Disease

    Get PDF
    Each year, around 60,000 people are diagnosed with Parkinson’s disease (PD) and the economic burden of PD is at least 14.4billionayearintheUnitedStates.PharmaceuticalcostsforaParkinson’spatientcanbereducedfrom14.4 billion a year in the United States. Pharmaceutical costs for a Parkinson’s patient can be reduced from 12,000 to $6,000 per year with the addition of neuromodulation therapies such as Deep Brain Stimulation (DBS), transcranial Direct Current Stimulation (tDCS), Transcranial Magnetic Stimulation (TMS), etc. In neurodegenerative disorders such as PD, deep brain stimulation (DBS) is a desirable approach when the medication is less effective for treating the symptoms. DBS incorporates transferring electrical pulses to a specific tissue of the central nervous system and obtaining therapeutic results by modulating the neuronal activity of that region. The hyperkinetic symptoms of PD are associated with the ensembles of interacting oscillators that cause excess or abnormal synchronous behavior within the Basal Ganglia (BG) circuitry. Delayed feedback stimulation is a closed loop technique shown to suppress this synchronous oscillatory activity. Deep Brain Stimulation via delayed feedback is known to destabilize the complex intermittent synchronous states. Computational models of the BG network are often introduced to investigate the effect of delayed feedback high frequency stimulation on partially synchronized dynamics. In this work, we developed several computational models of four interacting nuclei of the BG as well as considering the Thalamo-Cortical local effects on the oscillatory dynamics. These models are able to capture the emergence of 34 Hz beta band oscillations seen in the Local Field Potential (LFP) recordings of the PD state. Traditional High Frequency Stimulations (HFS) has shown deficiencies such as strengthening the synchronization in case of highly fluctuating neuronal activities, increasing the energy consumed as well as the incapability of activating all neurons in a large-scale network. To overcome these drawbacks, we investigated the effects of the stimulation waveform and interphase delays on the overall efficiency and efficacy of DBS. We also propose a new feedback control variable based on the filtered and linearly delayed LFP recordings. The proposed control variable is then used to modulate the frequency of the stimulation signal rather than its amplitude. In strongly coupled networks, oscillations reoccur as soon as the amplitude of the stimulus signal declines. Therefore, we show that maintaining a fixed amplitude and modulating the frequency might ameliorate the desynchronization process, increase the battery lifespan and activate substantial regions of the administered DBS electrode. The charge balanced stimulus pulse itself is embedded with a delay period between its charges to grant robust desynchronization with lower amplitude needed. The efficiency and efficacy of the proposed Frequency Adjustment Stimulation (FAS) protocol in a delayed feedback method might contribute to further investigation of DBS modulations aspired to address a wide range of abnormal oscillatory behaviors observed in neurological disorders. Adaptive stimulation can open doors towards simultaneous stimulation with MRI recordings. We additionally propose a new pipeline to investigate the effect of Transcranial Magnetic Stimulation (TMS) on patient specific models. The pipeline allows us to generate a full head segmentation based on each individual MRI data. In the next step, the neurosurgeon can adaptively choose the proper location of stimulation and transmit accurate magnetic field with this pipeline
    • …
    corecore