7,561 research outputs found

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer

    Get PDF
    In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc

    Macroeconomics modelling on UK GDP growth by neural computing

    Get PDF
    This paper presents multilayer neural networks used in UK gross domestic product estimation. These networks are trained by backpropagation and genetic algorithm based methods. Different from backpropagation guided by gradients of the performance, the genetic algorithm directly evaluates the performance of multiple sets of neural networks in parallel and then uses the analysed results to breed new networks that tend to be better suited to the problems in hand. It is shown that this guided evolution leads to globally optimal networks and more accurate results, with less adjustment of the algorithm needed

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    Identification of Nonlinear Systems From the Knowledge Around Different Operating Conditions: A Feed-Forward Multi-Layer ANN Based Approach

    Full text link
    The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.Comment: "6 pages, 9 figures; The Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC-2012), December 2012, Solan

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment
    corecore