5,685 research outputs found

    A survey on modern trainable activation functions

    Full text link
    In neural networks literature, there is a strong interest in identifying and defining activation functions which can improve neural network performance. In recent years there has been a renovated interest of the scientific community in investigating activation functions which can be trained during the learning process, usually referred to as "trainable", "learnable" or "adaptable" activation functions. They appear to lead to better network performance. Diverse and heterogeneous models of trainable activation function have been proposed in the literature. In this paper, we present a survey of these models. Starting from a discussion on the use of the term "activation function" in literature, we propose a taxonomy of trainable activation functions, highlight common and distinctive proprieties of recent and past models, and discuss main advantages and limitations of this type of approach. We show that many of the proposed approaches are equivalent to adding neuron layers which use fixed (non-trainable) activation functions and some simple local rule that constraints the corresponding weight layers.Comment: Published in "Neural Networks" journal (Elsevier

    FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks

    Full text link
    Rectified linear unit (ReLU) is a widely used activation function for deep convolutional neural networks. However, because of the zero-hard rectification, ReLU networks miss the benefits from negative values. In this paper, we propose a novel activation function called \emph{flexible rectified linear unit (FReLU)} to further explore the effects of negative values. By redesigning the rectified point of ReLU as a learnable parameter, FReLU expands the states of the activation output. When the network is successfully trained, FReLU tends to converge to a negative value, which improves the expressiveness and thus the performance. Furthermore, FReLU is designed to be simple and effective without exponential functions to maintain low cost computation. For being able to easily used in various network architectures, FReLU does not rely on strict assumptions by self-adaption. We evaluate FReLU on three standard image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. Experimental results show that the proposed method achieves fast convergence and higher performances on both plain and residual networks
    • …
    corecore