195 research outputs found

    Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization

    Get PDF
    Hyperspectral remote sensing images contain hundreds of data channels. Due to the high dimensionality of the hyperspectral data, it is difficult to design accurate and efficient image segmentation algorithms for such imagery. In this paper, a new multilevel thresholding method is introduced for the segmentation of hyperspectral and multispectral images. The new method is based on fractional-order Darwinian particle swarm optimization (FODPSO) which exploits the many swarms of test solutions that may exist at any time. In addition, the concept of fractional derivative is used to control the convergence rate of particles. In this paper, the so-called Otsu problem is solved for each channel of the multispectral and hyperspectral data. Therefore, the problem of n-level thresholding is reduced to an optimization problem in order to search for the thresholds that maximize the between-class variance. Experimental results are favorable for the FODPSO when compared to other bioinspired methods for multilevel segmentation of multispectral and hyperspectral images. The FODPSO presents a statistically significant improvement in terms of both CPU time and fitness value, i.e., the approach is able to find the optimal set of thresholds with a larger between-class variance in less computational time than the other approaches. In addition, a new classification approach based on support vector machine (SVM) and FODPSO is introduced in this paper. Results confirm that the new segmentation method is able to improve upon results obtained with the standard SVM in terms of classification accuracies.Sponsored by: IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer reviewedPre prin

    A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems

    Get PDF
    Image segmentation is considered a crucial step required for image analysis and research. Many techniques have been proposed to resolve the existing problems and improve the quality of research, such as region-based, threshold-based, edge-based, and feature-based clustering in the literature. The researchers have moved toward using the threshold technique due to the ease of use for image segmentation. To find the optimal threshold value for a grayscale image, we improved and used a novel meta-heuristic equilibrium algorithm to resolve this scientific problem. Additionally, our improved algorithm has the ability to enhance the accuracy of the segmented image for research analysis with a significant threshold level. The performance of our algorithm is compared with seven other algorithms like whale optimization algorithm, bat algorithm, sine–cosine algorithm, salp swarm algorithm, Harris hawks algorithm, crow search algorithm, and particle swarm optimization. Based on a set of well-known test images taken from Berkeley Segmentation Dataset, the performance evaluation of our algorithm and well-known algorithms described above has been conducted and compared. According to the independent results and analysis of each algorithm, our algorithm can outperform all other algorithms in fitness values, peak signal-to-noise ratio metric, structured similarity index metric, maximum absolute error, and signal-to-noise ratio. However, our algorithm cannot outperform some algorithms in standard deviation values and central processing unit time with the large threshold levels observed

    EHFT: An Ensembled Hyperopt Fine-Tuned Neural Network for Disease Detection in Tomato Plants

    Get PDF
    The identification of unhealthy plants in the crops at the early stage of cultivation helps for good farming. Unhealthy parts can be recognized using shape, color and texture, which are processed using feature extraction techniques. The feature extraction system stores the images in the matrix pixel format, which requires 3 channels for processing the images. Traditional neural networks utilize backpropagation techniques to adjust the random weights, which requires many resources while extracting a more significant number of features from a huge amount of data. These mechanisms also require more trainable parameters during the transformation of data from one layer to another. The proposed model implements the pre-trained model "RESNET152" (Residual Network), which is efficient for feature extraction and designs the last layer of the network as a "Tuned X-Gradient Boosting" ensemble algorithm for performing the binary classification of tomato leaves. RESNET can reduce computational resources because it implements residual blocks which fasten the learning rate by skipping a few connections in the network. The fine-tuned ensemble model helps the model identify the best parameters quickly. The learnable parameters are the essential elements of any ML model because they can easily identify the patterns associated with the different features. In the proposed model for feature extraction, pattern matching is the crucial step. Therefore, it is very necessary to tune the   XGBOOST algorithm. Compared to the traditional approaches, the proposed model enhanced the accuracy performance in training and testing with 98.58% and 95.56%, correspondingl

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    Computational meta-heuristics based on Machine Learning to optimize fuel consumption of vessels using diesel engines

    Get PDF
    With the expansion of means of river transportation, especially in the case of small and medium-sized vessels that make routes of greater distances, the cost of fuel, if not taken as an analysis criterion for a larger profit margin, is considered to be a primary factor , considering that the value of fuel specifically diesel to power internal combustion machines is high. Therefore, the use of tools that assist in decision-making becomes necessary, as is the case of the present research, which aims to contribute with a computational model of prediction and optimization of the best speed to decrease the fuel cost considering the characteristics of the SCANIA 315 machine. propulsion model, of a vessel from the river port of Manaus that carries out river transportation to several municipalities in Amazonas. According to the results of the simulations, the best training algorithm of the Artificial Neural Network (ANN) was the BFGS Quasi-Newton considering the characteristics of the engine for optimization with Genetic Algorithm (AG)
    corecore