81 research outputs found

    Hyper-temporal C-band SAR for baseline woody structural assessments in deciduous savannas

    Get PDF
    Savanna ecosystems and their woody vegetation provide valuable resources and ecosystem services. Locally calibrated and cost effective estimates of these resources are required in order to satisfy commitments to monitor and manage change within them. Baseline maps of woody resources are important for analyzing change over time. Freely available, and highly repetitive, C-band data has the potential to be a viable alternative to high-resolution commercial SAR imagery (e.g., RADARSAT-2, ALOS2) in generating large-scale woody resources maps. Using airborne LiDAR as calibration, we investigated the relationships between hyper-temporal C-band ASAR data and woody structural parameters, namely total canopy cover (TCC) and total canopy volume (TCV), in a deciduous savanna environment. Results showed that: the temporal filter reduced image variance; the random forest model out-performed the linear model; while the TCV metric consistently showed marginally higher accuracies than the TCC metric. Combinations of between 6 and 10 images could produce results comparable to high resolution commercial (C- & L-band) SAR imagery. The approach showed promise for producing a regional scale, locally calibrated, baseline maps for the management of deciduous savanna resources, and lay a foundation for monitoring using time series of data from newer C-band SAR sensors (e.g., Sentinel1).Greg Asner, through the CAO campaign and acknowledged partners, provided funding for the LiDAR acquisition and LiDAR processing, as well as interpretation and review of the results.http://www.mdpi.com/journal/remotesensingam2016Electrical, Electronic and Computer EngineeringGeography, Geoinformatics and Meteorolog

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Predicting forest cover in distinct ecosystems: the potential of multi-source sentinel-1 and -2 data fusion

    Get PDF
    The fusion of microwave and optical data sets is expected to provide great potential for the derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating in twin mode, they can provide an unprecedented data source to build dense spatial and temporal high-resolution time series across a variety of wavelengths. This study investigates (i) the ability of the individual sensors and (ii) their joint potential to delineate forest cover for study sites in two highly varied landscapes located in Germany (temperate dense mixed forests) and South Africa (open savanna woody vegetation and forest plantations). We used multi-temporal Sentinel-1 and single time steps of Sentinel-2 data in combination to derive accurate forest/non-forest (FNF) information via machine-learning classifiers. The forest classification accuracies were 90.9% and 93.2% for South Africa and Thuringia, respectively, estimated while using autocorrelation corrected spatial cross-validation (CV) for the fused data set. Sentinel-1 only classifications provided the lowest overall accuracy of 87.5%, while Sentinel-2 based classifications led to higher accuracies of 91.9%. Sentinel-2 short-wave infrared (SWIR) channels, biophysical parameters (Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)) and the lower spectrum of the Sentinel-1 synthetic aperture radar (SAR) time series were found to be most distinctive in the detection of forest cover. In contrast to homogenous forests sites, Sentinel-1 time series information improved forest cover predictions in open savanna-like environments with heterogeneous regional features. The presented approach proved to be robust and it displayed the benefit of fusing optical and SAR data at high spatial resolution

    Spatio-temporal and structural analysis of vegetation dynamics of Lowveld Savanna in South Africa

    Get PDF
    Savanna vegetation structure parameters are important for assessing the biomes status under various disturbance scenarios. Despite free availability remote sensing data, the use of optical remote sensing data for savanna vegetation structure mapping is limited by sparse and heterogeneous distribution of vegetation canopy. Cloud and aerosol contamination lead to inconsistency in the availability of time series data necessary for continuous vegetation monitoring, especially in the tropics. Long- and medium wavelength microwave data such as synthetic aperture radar (SAR), with their low sensitivity to clouds and atmospheric aerosols, and high temporal and spatial resolution solves these problems. Studies utilising remote sensing data for vegetation monitoring on the other hand, lack quality reference data. This study explores the potential of high-resolution TLS-derived vegetation structure variables as reference to multi-temporal SAR datasets in savanna vegetation monitoring. The overall objectives of this study are: (i) to evaluate the potential of high-resolution TLS-data in extraction of savanna vegetation structure variables; (ii) to estimate landscape-wide aboveground biomass (AGB) and assess changes over four years using multi-temporal L-band SAR within a Lowveld savanna in Kruger National Park; and (iii) to assess interactions between C-band SAR with various savanna vegetation structure variables. Field inventories and TLS campaign were carried out in the wet and dry seasons of 2015 respectively, and provided reference data upon which AGB, CC and cover classes were modelled. L-band SAR modelled AGB was used for change analysis over 4 years, while multitemporal C-band SAR data was used to assess backscatter response to seasonal changes in CC and AGB abundant classes and cover classes. From the AGB change analysis, on average 36 ha of the study area (91 ha) experienced a loss in AGB above 5 t/ha over 4 years. A high backscatter intensity is observed on high abundance AGB, CC classes and large trees as opposed to low CC and AGB abundance classes and small trees. There is high response to all structure variables, with C-band VV showing best polarization in savanna vegetation mapping. Moisture availability in the wet season increases backscatter response from both canopy and background classes

    Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data

    Get PDF
    Increasing attention is being directed at mapping the fractional woody cover of savannahs using Earth-observation data. In this study, we test the utility of Landsat TM/ ETM-based spectral-temporal variability metrics for mapping regional-scale woody cover in the Limpopo Province of South Africa, for 2010. We employ a machine learning framework to compare the accuracies of Random Forest models derived using metrics calculated from different seasons. We compare these results to those from fused Landsat-PALSAR data to establish if seasonal metrics can compensate for structural information from the PALSAR signal. Furthermore, we test the applicability of a statistical variable selection method, the recursive feature elimination (RFE), in the automation of the model building process in order to reduce model complexity and processing time. All of our tests were repeated at four scales (30, 60, 90, and 120 m-pixels) to investigate the role of spatial resolution on modelled accuracies. Our results show that multi-seasonal composites combining imagery from both the dry and wet seasons produced the highest accuracies (R2 = 0.77, RMSE = 9.4, at the 120 m scale). When using a single season of observations, dry season imagery performed best (R2 = 0.74, RMSE = 9.9, at the 120 m resolution). Combining Landsat and radar imagery was only marginally beneficial, offering a mean relative improvement of 1% in accuracy at the 120 m scale. However, this improvement was concentrated in areas with lower densities of woody coverage (<30%), which are areas of concern for environmental monitoring. At finer spatial resolutions, the inclusion of SAR data actually reduced accuracies. Overall, the RFE was able to produce the most accurate model (R2 = 0.8, RMSE = 8.9, at the 120 m pixel scale). For mapping savannah woody cover at the 30 m pixel scale, we suggest that monitoring methodologies continue to exploit the Landsat archive, but should aim to use multi-seasonal derived information. When the coarser 120 m pixel scale is adequate, integration of Landsat and SAR data should be considered, especially in areas with lower woody cover densities. The use of multiple seasonal compositing periods offers promise for large-area mapping of savannahs, even in regions with a limited historical Landsat coverage

    Remote sensing environmental change in southern African savannahs : a case study of Namibia

    Get PDF
    Savannah biomes cover a fifth of Earth’s surface, harbour many of the world’s most iconic species and most of its livestock and rangeland, while sustaining the livelihoods of an important proportion of its human population. They provide essential ecosystem services and functions, ranging from forest, grazing and water resources, to global climate regulation and carbon sequestration. However, savannahs are highly sensitive to human activities and climate change. Across sub-Saharan Africa, climatic shifts, destructive wars and increasing anthropogenic disturbances in the form of agricultural intensification and urbanization, have resulted in widespread land degradation and loss of ecosystem services. Yet, these threatened ecosystems are some of the least studied or protected, and hence should be given high conservation priority. Importantly, the scale of land degradation has not been fully explored, thereby comprising an important knowledge gap in our understanding of ecosystem services and processes, and effectively impeding conservation and management of these biodiversity hotspots. The primary drivers of land degradation include deforestation, triggered by the increasing need for urban and arable land, and concurrently, shrub encroachment, a process in which the herbaceous layer, a defining characteristic of savannahs, is replaced with hardy shrubs. These processes have significant repercussions on ecosystem service provision, both locally and globally, although the extents, drivers and impacts of either remain poorly quantified and understood. Additionally, regional aridification anticipated under climate change, will lead to important shifts in vegetation composition, amplified warming and reduced carbon sequestration. Together with a growing human population, these processes are expected to compound the risk of land degradation, thus further impacting key ecosystem services. Namibia is undergoing significant environmental and socio-economic changes. The most pervasive change processes affecting its savannahs are deforestation, degradation and shrub encroachment. Yet, the extent and drivers of such change processes are not comprehensively quantified, nor are the implications for rural livelihoods, sustainable land management, the carbon cycle, climate and conservation fully explored. This is partly due to the complexities of mapping vegetation changes with satellite data in savannahs. They are naturally spatially and temporally variable owing to erratic rainfall, divergent plant functional type phenologies and extensive anthropogenic impacts such as fire and grazing. Accordingly, this thesis aims to (i) quantify distinct vegetation change processes across Namibia, and (ii) develop methodologies to overcome limitations inherent in savannah mapping. Multi-sensor satellite data spanning a range of spatial, temporal and spectral resolutions are integrated with field datasets to achieve these aims, which are addressed in four journal articles. Chapters 1 and 2 are introductory. Chapter 3 exploits the Landsat archive to track changes in land cover classes over five decades throughout the Namibian Kalahari woodlands. The approach addresses issues implicit in change detection of savannahs by capturing the distinct phenological phases of woody vegetation and integrating multi-sensor, multi-source data. Vegetation extent was found to have decreased due to urbanization and small-scale arable farming. An assessment of the limitations leads to Chapter 4, which elaborates on the previous chapter by quantifying aboveground biomass changes associated with deforestation and shrub encroachment. The approach centres on fusing multiple satellite datasets, each acting as a proxy for distinct vegetation properties, with calibration/validation data consisting of concurrent field and LiDAR measurements. Biomass losses predominate, demonstrating the contribution of land management to ecosystem carbon changes. To identify whether biomass is declining across the country, Chapter 5 focuses on regional, moderate spatial resolution time-series analyses. Phenological metrics extracted from MODIS data are used to model observed fractional woody vegetation cover, a proxy for biomass. Trends in modelled fractional woody cover are then evaluated in relation to the predominant land-uses and precipitation. Negative trends slightly outweighed positive trends, with decreases arising largely in protected, urban and communal areas. Since precipitation is a fundamental control on vegetation, Chapter 6 investigates its relation to NDVI, by assessing to what extent observed trends in vegetation cover are driven by rainfall. NDVI is modelled as a function of precipitation, with residuals assumed to describe the fraction of NDVI not explained by rainfall. Mean annual rainfall and rainfall amplitude show a positive trend, although extensive “greening” is unrelated to rainfall. NDVI amplitude, used as a proxy for vegetation density, indicates a widespread shift to a denser condition. In Chapter 7, trend analysis is applied to a Landsat time-series to overcome spatial and temporal limitations characteristic of the previous approaches. Results, together with those of the previous chapters, are synthesized and a synopsis of the main findings is presented. Vegetation loss is predominantly caused by demand for urban and arable land. Greening trends are attributed to shrub encroachment and to a lesser extent conservation laws, agroforestry and rangeland management, with precipitation presenting little influence. Despite prevalent greening, degradation processes associated with shrub encroachment, including soil erosion, are likely to be widespread. Deforestation occurs locally while shrub encroachment occurs regionally. This thesis successfully integrates multi-source data to map, measure and monitor distinct change processes across scales

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information

    Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

    Get PDF
    Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities
    corecore