7 research outputs found

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    Random induced subgraphs of Cayley graphs induced by transpositions

    Get PDF
    In this paper we study random induced subgraphs of Cayley graphs of the symmetric group induced by an arbitrary minimal generating set of transpositions. A random induced subgraph of this Cayley graph is obtained by selecting permutations with independent probability, λn\lambda_n. Our main result is that for any minimal generating set of transpositions, for probabilities λn=1+ϵnn−1\lambda_n=\frac{1+\epsilon_n}{n-1} where n−1/3+δ≤ϵn0n^{-{1/3}+\delta}\le \epsilon_n0, a random induced subgraph has a.s. a unique largest component of size ℘(ϵn)1+ϵnn−1n!\wp(\epsilon_n)\frac{1+\epsilon_n}{n-1}n!, where ℘(ϵn)\wp(\epsilon_n) is the survival probability of a specific branching process.Comment: 18 pages, 1 figur

    Cayley graphs of order kp are hamiltonian for k < 48

    Full text link
    We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p is prime, then every connected Cayley graph on G is hamiltonian (unless kp = 2). As part of the proof, it is verified that every connected Cayley graph of order less than 48 is either hamiltonian connected or hamiltonian laceable (or has valence less than three).Comment: 16 pages. GAP source code is available in the ancillary file

    Investigation of the robustness of star graph networks

    Full text link
    The star interconnection network has been known as an attractive alternative to n-cube for interconnecting a large number of processors. It possesses many nice properties, such as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and maximal fault tolerance, which are all desirable when building an interconnection topology for a parallel and distributed system. Investigation of the robustness of the star network architecture is essential since the star network has the potential of use in critical applications. In this study, three different reliability measures are proposed to investigate the robustness of the star network. First, a constrained two-terminal reliability measure referred to as Distance Reliability (DR) between the source node u and the destination node I with the shortest distance, in an n-dimensional star network, Sn, is introduced to assess the robustness of the star network. A combinatorial analysis on DR especially for u having a single cycle is performed under different failure models (node, link, combined node/link failure). Lower bounds on the special case of the DR: antipode reliability, are derived, compared with n-cube, and shown to be more fault-tolerant than n-cube. The degradation of a container in a Sn having at least one operational optimal path between u and I is also examined to measure the system effectiveness in the presence of failures under different failure models. The values of MTTF to each transition state are calculated and compared with similar size containers in n-cube. Meanwhile, an upper bound under the probability fault model and an approximation under the fixed partitioning approach on the ( n-1)-star reliability are derived, and proved to be similarly accurate and close to the simulations results. Conservative comparisons between similar size star networks and n-cubes show that the star network is more robust than n-cube in terms of ( n-1)-network reliability

    Subject Index Volumes 1–200

    Get PDF
    corecore