101,770 research outputs found

    Pulsations powered by hydrogen shell burning in white dwarfs

    Get PDF
    In the absence of a third dredge-up episode during the asymptotic giant branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial gg-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant branch evolution of their progenitor stars. We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations, and analyze their pulsation stability for the models in the range of effective temperatures Teff∼15 000 − 8 000T_{\rm eff} \sim 15\,000\,-\, 8\,000 K. We demonstrate that, for white dwarf models with masses M_{\star} \lesssim 0.71\,\rm M_{\sun} and effective temperatures 8 500≲Teff≲11 6008\,500 \lesssim T_{\rm eff} \lesssim 11\,600 K that evolved from low-metallicity progenitors (Z=0.0001Z= 0.0001, 0.00050.0005, and 0.0010.001) the dipole (ℓ=1\ell= 1) and quadrupole (ℓ=2\ell=2) g1g_1 modes are excited mostly due to the hydrogen-burning shell through the ε\varepsilon-mechanism, in addition to other gg modes driven by either the κ−γ\kappa-\gamma or the convective driving mechanism. However, the ε\varepsilon mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. We suggest that efforts should be made to observe the dipole g1g_1 mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant branch phase.Comment: 6 pages, 4 figures, 1 table. To be published in Astronomy and Astrophysic

    Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: Experimental and numerical analysis

    Get PDF
    Effects of hydrogen enrichment and steam addition on laminar burning velocity of methaneeair premixed flame were studied both experimentally and numerically. Measurements were carried out using the slot burner method at 1 bar for fresh gases temperatures of 27 °C and 57 °C and for variable equivalence ratios going from 0.8 to 1.2. The hydrogen content in the fuel was varied from 0% to 30% in volume and the steam content in the air was varied from 0 to 112 g/kg (0e100% of relative humidity). Numerical calculations were performed using the COSILAB code with the GRI-Mech 3.0 mechanism for one-dimensional premixed flames. The calculations were implemented first at room temperature and pressure and then extended to higher temperatures (up to 917 K) and pressures (up to 50 bar). Measurements of laminar burning velocities of methanee hydrogeneair and methaneeairesteam agree with the GRI-Mech calculations and previous measurements from literature obtained by different methods. Results show that enrich- ment by hydrogen increases of the laminar burning velocity and the adiabatic flame temperature. The addition of steam to a methaneeair mixture noticeably decreases the burning velocity and the adiabatic flame temperature. Modeling shows that isentropic compression of fresh gases leads to the increase of laminar burning velocity

    Multidimensional hydrodynamic simulations of the hydrogen injection flash

    Full text link
    The injection of hydrogen into the convection shell powered by helium burning during the core helium flash is commonly encountered during the evolution of metal-free and extremely metal-poor low-mass stars. With specifically designed multidimensional hydrodynamic simulations, we aim to prove that an entropy barrier is no obstacle for the growth of the helium-burning shell convection zone in the helium core of a metal-rich Pop I star, i.e. convection can penetrate into the hydrogen-rich layers for these stars, too. We further study whether this is also possible in one-dimensional stellar evolutionary calculations. Our hydrodynamical simulations show that the helium-burning shell convection zone in the helium core moves across the entropy barrier and reaches the hydrogen-rich layers. This leads to mixing of protons into the hotter layers of the core and to a rapid increase of the nuclear energy production at the upper edge of the helium-burning convection shell - the hydrogen injection flash. As a result a second convection zone appears in the hydrogen-rich layers. Contrary to 1D models, the entropy barrier separating the two convective shells from each other is largely permeable to chemical transport when allowing for multidimensional flow, and consequently, hydrogen is continuously mixed deep into the helium core. We find it difficult to achieve such a behavior in one-dimensional stellar evolutionary calculations.Comment: 8 pages, 8 figures - accepted for publication in Astronomy and Astrophysics. Animations related to the manuscript can be downloaded from http://www-astro.ulb.ac.be/~mocak/index.php/Main/AnimationsHeFlas

    Neutrino-Accelerated Hot Hydrogen Burning

    Get PDF
    We examine the effects of significant electron anti-neutrino fluxes on hydrogen burning. Specifically, we find that the bottleneck weak nuclear reactions in the traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino capture, increasing the energy generation rate. We also discuss how anti-neutrino capture reactions can alter the conditions for break out into the rp-process. We speculate on the impact of these considerations for the evolution and dynamics of collapsing very- and super- massive compact objects.Comment: 14 pages, 6 figures, submitted to ApJ; minor content chang
    • …