82,573 research outputs found

    Confined compression of collagen hydrogels

    Get PDF
    Reconstituted collagen hydrogels are often used for in vitro studies of cell-matrix interaction and as scaffolds for tissue engineering. Understanding the mechanical and transport behaviours of collagen hydrogels is therefore extremely important, albeit difficult due to their very high water content (typically > 99.5%). In the present study the mechanical behaviour of collagen hydrogels in confined compression was investigated using biphasic theory (J. Biomech. Eng. 102 (1980) 73), to ascertain whether the technique is sufficiently sensitive to determine differences in the characteristics of hydrogels of between 0.2% and 0.4% collagen. Peak stress, equilibrium stress, aggregate modulus and hydraulic permeability of the hydrogels exhibited sensitivity to collagen content, demonstrating that the technique is clearly able to discriminate between hydrogels with small differences in collagen content and may also be sensitive to factors that affect matrix remodelling. The results also offer additional insight into the deformation-dependent permeability of collagen hydrogels. This study suggests that confined compression, together with biphasic theory, is a suitable technique for assessing the mechanical properties of collagen hydrogels

    Ionically cross-linked alginate hydrogels as drug delivery systems for analgesics in broiler chickens : thesis presented in partial fulfilment of the requirement for the degree of Masters of Science in Chemistry at Massey University, Palmerston North, Manawatu, New Zealand

    Get PDF
    Treating birds with analgesic drugs requires continuous injections of near lethal concentrations to maintain the therapeutic dose in the blood plasma. This is due to birds having higher metabolic rates than mammals. Therefore, there is a need to develop drug delivery systems that can control and slow down the release of analgesics in birds. This study was designed to analyse the sustained release of the model analgesics, sodium salicylate and sodium aspirin, from ionically cross-linked alginate hydrogels, in in vitro and in vivo experiments using broiler chickens as the model bird. Analgesic loaded hydrogels separated into two layers, unlike the homogeneous blank hydrogels. This was labelled as the separation effect. Swelling studies indicated the absence of the insoluble cross-linked alginate material in the hydrogels where the separation effect occurred, with most of the hydrogels dissolving back into the medium. The highest equilibrium swelling percentage achieved in the loaded hydrogels was 68 %. In comparison, the highest equilibrium swelling percentage in the blank hydrogels was 622 %. In vitro drug release profiles showed that the hydrogels released up to 100% of the sodium salicylate within 3.33 hours. In contrast, the hydrogels containing sodium aspirin released only 35 % of the encapsulated drug. Hydrogels containing a drug concentration of 150 mg/mL were injected into the model birds at a dose rate of 150 mg/Kg. No chicken reacted negatively to the hydrogel injection. In vivo results indicate sustained release of the model analgesic from the hydrogels compared to the release from the aqueous solutions of the drug. The effective concentration for an analgesic effect of sodium salicylate was maintained by the group injected with an aqueous solution of sodium salicylate 18 hours after the injection. The groups injected with the hydrogel with the maximum calcium chloride content saw the largest sustained release, with the plasma concentration of sodium salicylate remaining over the effective concentration for up to 36 hours after the injection. Keywords: Sodium salicylate, sodium aspirin, hydrogel, analgesia, sustained release, broiler chicken

    High compression strength single network hydrogels with pillar[5]arene junction points

    Get PDF
    The present study highlights a straightforward and versatile strategy for the synthesis of strong poly(2-isopropenyl-2-oxazoline) hydrogels with tunable properties by using a bifunctional macrocyclic pillar[5]arene host having two carboxylic acid groups as cross-linker. This new strategy provides access to materials with tailored properties from soft and flexible to rigid and strong. The mechanical properties and water uptake of the hydrogels could be effortlessly controlled during the synthesis step through variation of the cross-linker content and after cross-linking by guest-host interactions. The hydrogels displayed strongly enhanced mechanical properties (i.e., compression and tensile modulus, energy dissipation, stress at break and storage modulus) compared to their counterparts cross-linked with linear dicarboxylic acids. The remarkable properties of the pillar[5]arene cross-linked hydrogels were assigned to the transfer of the external stress to the rigid and bulky pillar[5]arene residues that contribute to the overall dimensional stability of the hydrogels and allow energy dissipation. Moreover, we demonstrate the applicability of these materials for water purification. The hydrogels showed high adsorption performance for phenols and dyes such as methylene blue and methyl red and they could be easily regenerated, by washing with an organic solvent for reuse

    Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment

    Get PDF
    Chitosan, a derivative of chitin, is a biodegradable polymer known of its favorable properties, applicable in medicine and industry. Commonly obtained chitosan hydrogels are of various swelling capacity, and may bind only anions losing their susceptibility to biodegradation. Hydrogels are mostly obtained using toxic crosslinkers, which pollute environment due to waste generation during their synthesis. In the present article a novel, waste-free method for obtaining chitosan hydrogels under microwave irradiation, is described. Their chemical and morphological structure, swelling properties, sorption capability of a model dye and cadmium ions are described, and kinetic studies, were carried out. Biodegradability of the obtained hydrogels was investigated with the Sturm Test method. As a result, multifunctional chitosan hydrogels with both negative and positive surface charges and increased ability of anions and cations binding, were obtained. Materials were fully biodegradable, capable to absorb high amounts of water, as well as to remove various water contaminants.Web of Science111081980

    Effects of Liposomes Contained in Thermosensitive Hydrogels as Biomaterials Useful in Neural Tissue Engineering

    Get PDF
    Indexación: Scopus.Advances in the generation of suitable thermosensitive hydrogels for the delivery of cells in neural tissue engineering demonstrate a delicate relationship between physical properties and capabilities to promote cell proliferation and differentiation. To improve the properties of these materials, it is possible to add liposomes for the controlled release of bioactive elements, which in turn can affect the physical and biological properties of the hydrogels. In the present investigation, different hydrogels based on Pluronic F127 have been formulated with the incorporation of chitosan and two types of liposomes of two different sizes. The rheological and thermal properties and their relation with the neurite proliferation and growth of the PC12 cell line were evaluated. Our results show that the incorporation of liposomes modifies the properties of the hydrogels dependent on the concentration of chitosan and the lipid type in the liposomes, which directly affect the capabilities of the hydrogels to promote the viability and differentiation of PC12 cells. © 2017 by the authors.http://www.mdpi.com/1996-1944/10/10/112

    Multifunctional enzymatically generated hydrogels for chronic wound application

    Get PDF
    The healing of chronic wounds requires intensive medical intervention at huge healthcare costs. Dressing materials should consider the multifactorial nature of these wounds comprising deleterious proteolytic and oxidative enzymes and high bacterial load. In this work, multifunctional hydrogels for chronic wound application were produced by enzymatic cross- linking of thiolated chitosan and gallic acid. The hydrogels combine several beneficial to wound healing properties, controlling the matrix metalloproteinases (MMPs) and myeloperoxidase (MPO) activities, oxidative stress, and bacterial contamination. In vitro studies revealed above 90% antioxidant activity, and MPO and collagenase inhibition by up to 98 and 23%, respectively. Ex vivo studies with venous leg ulcer exudates confirmed the inhibitory capacity of the dressings against MPO and MMPs. Additionally, the hydrogels reduced the population of the most frequently encountered in nonhealing wounds bacterial strains. The stable at physiological conditions and resistant to lysozyme degradation hydrogels showed high biocompatibility with human skin fibroblastsPeer ReviewedPostprint (author's final draft

    A Dual Stimuli Responsive Supramolecular Gel Provides Insulin Hydrolysis Protection and Redox-Controlled Release of Actives

    Get PDF
    Two supramolecular hydrogelators containing a central disulfide moiety and terminal carboxylic acid groups are studied. On the one hand, the hydrogels are responsive to a reductive environment, which transforms the disulfide unit to the corresponding thiols. On the other hand, the hydrogels show pH response associated with the presence of carboxylic acid units. Gels are formed at pH below ≈4 while at higher pH values, ionization of the gela-tors provokes gel disassembly. The properties of the gel are exploited for the release, as a proof of concept, of Bromophenol Blue in the presence of the reducing species tris(2-carboxyethyl)phosphine hydrochloride. Additionally, insulin is loaded into the hydrogels and protected from hydrolysis with simu-lated gastric fluid containing pepsin. Quantitative release of unaltered insulin, checked with an enzyme-linked immunosorbent assay colorimetric assay, is observed upon treatment with pH 7.4 buffer. This behavior would permit the use of the new hydrogels for oral insulin deliver
    corecore