194 research outputs found

    Time-Independent Gravitational Fields in the BGK Scheme for Hydrodynamics

    Get PDF
    We incorporate a time-independent gravitational field into the BGK scheme for numerical hydrodynamics. In the BGK scheme the gas evolves via an approximation to the collisional Boltzmann equation, namely the Bhatnagar-Gross-Krook (BGK) equation. Time-dependent hydrodynamical fluxes are computed from local solutions of the BGK equation. By accounting for particle collisions, the fundamental mechanism for generating dissipation in gas flow, a scheme based on the BGK equation gives solutions to the Navier-Stokes equations: the fluxes carry both advective and dissipative terms. We perform numerical experiments in both 1D Cartesian geometries and axisymmetric cylindrical coordinates.Comment: 31 pages including 19 figures (For higher resolution figs. see http://www.mpia-hd.mpg.de/MPIA/Projects/THEORY/slyz), Accepted for publication in Astronomy and Astrophysics, Supplement Serie

    Axisymmetric smoothed particle hydrodynamics with self-gravity

    Get PDF
    The axisymmetric form of the hydrodynamic equations within the smoothed particle hydrodynamics (SPH) formalism is presented and checked using idealized scenarios taken from astrophysics (free fall collapse, implosion and further pulsation of a sun-like star), gas dynamics (wall heating problem, collision of two streams of gas) and inertial confinement fusion (ICF, -ablative implosion of a small capsule-). New material concerning the standard SPH formalism is given. That includes the numerical handling of those mass points which move close to the singularity axis, more accurate expressions for the artificial viscosity and the heat conduction term and an easy way to incorporate self-gravity in the simulations. The algorithm developed to compute gravity does not rely in any sort of grid, leading to a numerical scheme totally compatible with the lagrangian nature of the SPH equations.Comment: 17 pages, 10 figures, 1 Table. Accepted for publication in MNRA

    Consideration of Wear Rates at High Velocities

    Get PDF
    The goal of this research is to study sliding contact wear of test sled slippers at high velocities. Experimentation representative of the slippers is infeasible, so numerical studies are used. An Eulerian-Lagrangian hydrocode called CTH is used to study mechanical wear. Failure criteria have been established to evaluate the stresses and strains resulting from the hydrocode simulation of a single asperity collision. The results from the hydrocode simulations are scaled to account for slipper bounce and multiple asperities, and these results produce total wear values that are approximately 90% of total experimental wear. Slipper thermodynamics have also been evaluated. The fraction of frictional heating energy entering the slipper has been evaluated, and an average value of approximately 0.125 has been determined. Total wear for a slipper reaching 3,000 m/s and following a typical slipper velocity profile has been evaluated to range from 3 to 6% of the total slipper volume

    Comprehensive Study and Optimized Redesign of the CERN's Antiproton Decelerator Target

    Full text link
    El Antiproton Decelerator Target (AD-Target) es un dispositivo único responsable de la generación de Antiprotones en la Organización Europea para la Investigación Nuclear (CERN). En operación, intensos haces de protones con una energía de 26 GeV son impactados en su núcleo, un cilindro de 3 mm de diámetro constituido por un material de alta densidad como el iridio, creando partículas secundarias -entre ellas, antiprotones- como consecuencia de las reacciones nucleares inducidas en el interior de éste. La tesis profundiza en las características del target de producción de antiprotones, y en particular, en la respuesta mecánica de su núcleo, el cual está sometido a un incremento de temperatura de aproximademente 2000 grados centígrados en menos de 0.5 microsegundos cada vez que es impactado por el haz de protones primario. Para ello, una metodología combinando técnicas numéricas y experimentales ha sido llevada a cabo. Se han aplicado herramientas computacionales específicas, llamadas hydrocodes, para simular la respuesta dinámica originada en el núcleo del target y su matriz contenedora, hecha de grafito, indicando su potencial fragmentación como resultado de una onda radial de alta frecuencia de presión compresión-tracción generada después de cada impacto del haz de protones. Asimismo, se ha llevado a cabo un experimento llamado HiRadMat27. En éste, varios cilindros de materiales de alta densidad, candidatos para un futuro diseño del target, tales como Ir, W, W-La, Mo, TZM y Ta, han sido expuestos a condiciones dinámicas equivalentes a las alcanzadas en el AD-Target mediante impactos de haces de protones de 440 GeV en la instalación HiRadMat. Se ha usado instrumentación en línea para medir la onda radial pronosticada, confirmando la precisión de las simulaciones de hydrocodes. Todos los materiales irradiados excepto Ta sufrieron agrietamientos internos desde condiciones 5-7 veces menores a las presentes en el AD-Target, mientras que este último aparentemente sobrevivió. La información obtenida ha sido aplicada para proponer un nuevo diseño optimizado del target, el cual incluye un sistema de refrigeración de aire a presión, una nueva configuración en Ta de su núcleo, y una matriz contenedora hecha de grafito expandido (GE). Se han llevado a cabo cálculos de dinámica de fluidos computacional y elementos finitos para validar el sistema de refrigeración y la vida a fatiga del ensamblaje del target. Además, se ha construido un primer prototipo del núcleo del target y su matrix contenedora. Estas actividades marcan la senda para la fabricación de un nuevo lote de targets que garanticen la física de antiprotones en el CERN durante las siguientes décadas de operación.The Antiproton Decelerator Target (AD-Target) is a unique device responsible for the production of antiprotons at the European Organization for Nuclear Research (CERN). During operation, intense 26 GeV energy proton beams are impacted into its core, made of a 3 mm diameter rod of a high density material such as iridium, creating secondary particles -including antiprotons- from the nuclear reactions induced in its interior. This thesis delves into the characteristics of antiproton production and in particular in the mechanical response of the target core material, which is exposed to a rise of temperature of approximate 2000 degrees Celsius in less than 0.5 microseconds each time is impacted by the primary proton beam. A coupled numerical-experimental approach has been applied for this purpose. Specific computational tools, called hydrocodes, have been used for simulating the extreme dynamic response taking place in the target core and its containing graphite matrix, indicating their potential damage and fragmentation as a result of a high frequency radial compressive-to-tensile pressure wave generated after each proton beam impact. A challenging first-of-its-kind experiment called HRMT27 was carried out. Several rods of high density materials, candidate for a future optimized target design, such as Ir, W, W-La, Mo, TZM and Ta were brought to equivalent dynamic conditions as reached in the AD-Target core by impacting them with 440 GeV proton beams using the HiRadMat facility. Online instrumentation was used to measure the predicted radial wave, confirming the accuracy of the hydrocode simulations. All of the irradiated target materials except Ta showed internal cracking from conditions 5-7 times below the present in the AD-Target while the latter apparently survived. Lessons learned are applied for proposing a new optimized target design, including a pressurized-air cooling system, Ta core configuration, and a containing matrix made of expanded graphite (EG). Computational Fluid Dynamic and Structural Finite Element analyses have been carried out to validate the new cooling system and fatigue life of the target assembly. A first prototype of the target core and its containing EG matrix has been built. These activities lead the way into manufacturing a new set of antiproton targets to guarantee antiproton physics at CERN during next decades of operation.L'Antiproton Decelerator Target (AD-Target) és un dispositiu únic responsable de la generació d'Antiprotons a la Organització Europea per la Recerca Nuclear (CERN). En operació, intensos feixos de protons amb una energia de 26 GeV impacten contra el seu nucli, un cilindre de 3 mm de diámetre constituït per un material de densitat alta com l'iridi, creant partícules secundáries - entre elles, antiprotons - com a conseqüència de les reaccions nuclears induïdes a l'interior d'aquest. La tesis profunditza en les característiques del target de producció d'antiprotons i, en particular, a la resposta mecánica del seu nucli, el qual és sotmès a un increment de temperatura de aproximadement 2000 graus centígrads en menys de 0.5 microsegons cada vegada que és impactat pel feix de protons primari. Per aixó, s'ha portat a terme una metodologia que combina tècniques numèriques i experimentals. S'han utilitzat eines computacionals específiques, anomenades hydrocodes, per simular la resposta dinàmica originada al nucli del target i a la seva matriu contenidora, feta de grafit. La dita resposta, indica la seva potencial fragmentació com a resultat d'una ona radial d'alta freqüència de pressió compressió-tracció generada després de cada impact del feix de protons. Així mateix, s'ha portat a terme un experiment anomenat HiRadMat27. En aquest, varis cilindres de materials d'alta densitat, candidats per un futur diseny del target, tals com Ir, W, W-La, Mo, TZM i Ta, han estat exposats a condicions dinàmiques equivalents a les assolides a l'AD-Target mitjanant impactes de feixos de protons de 440 GeV a l'instalació HiRadMat. S'ha utilitzat instrumentació en línia per mesurar l'ona radial pronosticada, confirmant la precisió de les simulacions d'hydrocodes. Tots el materials irradiats excepte Ta van sofrir esquerdaments interns desde condicions de 5-7 vegades menors a les presents a l'AD-Target, mentres que aquest últim aparentment va sobreviure. L'informació obtinguda ha estat aplicada per proposar un nou diseny optimizat del target, el qual inclou un sistema de refrigeració de l'aire a pressió, una nova configuració en Ta del seu nucli, i una matriu contenidora feta de grafit expandit (GE). S'han portat a terme càlculs de dinàmica de fluids computacionals i elements finits per validar el sistema de refrigeració i la vida a fatiga de l'ensambladura del target. S'ha construit un primer prototip del nucli del target i la seva matriu contenidora. Totes aquestes activitats marquen la sendera per a la fabricació del nou lot de targets que garantitzin la física d'antiprotons al CERN durant les següents décades d'operació.Torregrosa Martín, CL. (2018). Comprehensive Study and Optimized Redesign of the CERN's Antiproton Decelerator Target [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/100489TESI

    SciKit-GStat Uncertainty: A software extension to cope with uncertain geostatistical estimates

    Get PDF
    This study is focused on an extension of a well established geostatistical software to enable one to effectively and interactively cope with uncertainty in geostatistical applications. The extension includes a rich component library, pre-built interfaces and an online application. We discuss the concept of replacing the empirical variogram with its uncertainty bound. This enables one to acknowledge uncertainties characterizing the underlying geostatistical datasets and typical methodological approaches. This allows for a probabilistic description of the variogram and its parameters at the same time. Our approach enables (1) multiple interpretations of a sample and (2) a multi-model context for geostatistical applications. We focus the sample application on propagating observation uncertainties into manual variogram parametrization and analyze its effects. Using two different datasets, we show how insights on uncertainty can be used to reject variogram models, thus constraining the space of formally equally probable models to tackle the issue of parameter equifinality

    The Formation of Short Period Binary Star Systems From Stable, Self-Gravitating, Gaseous Bars.

    Get PDF
    Although we have a general understanding of how stars form, and there. are accepted theories that explain the formation of long-period binaries, we do not yet understand how short period binaries form. Here we present simulations that clearly demonstrate how such systems may form naturally from dense interstellar gas clouds. First, we present two models of compressible, self-gravitating fluid configurations with bar-like structures and supersonic internal motions. Both models have been constructed via dynamical simulations that have started from initially axisymmetric, rapidly rotating polytropes that were known to be dynamically unstable toward the development of a bar-like or two-armed spiral structure. The two initial models differed mainly in their initial angular momentum distributions. In each case, the nonlinear development of the dynamical instability results in the formation of a bar-like configuration that is spinning with a well-defined pattern speed. By all accounts, these models appear to be compressible analogs of Riemann ellipsoids. Our final steady-state configurations appear to be dynamically stable and include a mild standing shock front. We have allowed one of these dynamically stable, triaxial configurations to cool slowly and have continually followed its dynamical evolution. A binary instability, results after reducing the mean pressure of the configuration to ∼50% of its original value. The instability appears as an oscillation between two configurations: One that resembles a common envelope binary system with circulation around the two local density maxima, and the other that appears to be an ellipsoidal configuration with density maxima near the center. Unfortunately, as the model cools, it continues to contract and becomes less well resolved in our numerical grid. Hence, we have not been able to follow this instability to its ultimate fate. However, the strength and nature of the instability lead us to conclude that fission will be the outcome. This work provides the strongest evidence, to date, that short period binary stars form in a very natural way through a fission instability, as proposed by Lebovitz (1987), that fission is the only possible outcome

    The 1999 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 99 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, ten- sional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dy- namic response of the target materials, and validate these computations against experimental data
    corecore