278 research outputs found

    An Analysis on the Applicability of Meta-Heuristic Searching Techniques for Automated Test Data Generation in Automatic Programming Assessment

    Get PDF
    حظي تقييم البرمجة التلقائي (APA) بالكثير من الاهتمام بين الباحثين بشكل أساسي لدعم الدرجات الآلية ووضع علامات على المهامالمكلف بادائها الطلاب أو التدريبات بشكل منهجي. يتم تعريف APA بشكل شائع كطريقة يمكن أن تعزز الدقة والكفاءة والاتساق وكذلك تقديمملاحظات فورية لحلول للطلاب. في تحقيق APA ، تعد عملية إنشاء بيانات الاختبار مهمة للغاية وذلك لإجراء اختبار ديناميكي لمهمةالطلاب. في مجال اختبار البرمجيات ، أوضحت العديد من الأبحاث التي تركز على توليد بيانات الاختبار نجاح اعتماد تقنيات البحث الفوقية(MHST) من أجل تعزيز إجراءات استنباط بيانات الاختبار المناسبة للاختبار الفعال. ومع ذلك، فإن الأبحاث التي أجريت على APA حتىالآن لم تستغل بعد التقنيات المفيدة لتشمل تغطية اختبار جودة برنامج أفضل. لذلك ، أجرت هذه الدراسة تقييماً مقارنا لتحديد أي تقنية بحثفوقي قابلة للتطبيق لدعم كفاءة توليد بيانات الاختبار الآلي (ATDG) في تنفيذ اختبار وظيفي ديناميكي. في تقييم البرمجة التلقائي يتم تضمينالعديد من تقنيات البحث الفوقية الحديثة في التقييم المقارن الذي يجمع بين كل من خوارزميات البحث المحلية والعالمية من عام 2000 حتىعام 2018 .تشير نتيجة هذه الدراسة إلى أن تهجين Cuckoo Search مع Tabu Search و lévy flight كواحدة من طرق البحث الفوقية الواعدةليتم تطبيقها ، حيث أنه يتفوق على الطرق الفوقية الأخرى فيما يتعلق بعدد التكرارات ونطاق المدخلات.Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient testing. Nonetheless, thus far the researches on APA have not yet usefully exploited the techniques accordingly to include a better quality program testing coverage. Therefore, this study has conducted a comparative evaluation to identify any applicable MHST to support efficient Automated Test Data Generation (ATDG) in executing a dynamic-functional testing in APA. Several recent MHST are included in the comparative evaluation combining both the local and global search algorithms ranging from the year of 2000 until 2018. Result of this study suggests that the hybridization of Cuckoo Search with Tabu Search and lévy flight as one of promising MHST to be applied, as it’s outperforms other MHST with regards to number of iterations and range of inputs

    Optimizing Laying Hen Diet using Multi-Swarm Particle Swarm Optimization

    Get PDF
    Formulating animal diet by accounting fluctuating cost, nutrient requirement, balanced amino acids, and maximum composition simultaneously is a difficult and complex task. Manual formulation and Linear Programming encounter difficulty to solve this problem. Furthermore, the complexity of laying hen diet problem is change through ingredient choices. Thus, an advanced technique to enhance formula quality is a vital necessity. This paper proposes the Multi-Swarm Particle Swarm Optimization (MSPSO) to enhance the diversity of particles and prevent premature convergence in PSO. MSPSO work cooperatively and competitively to optimize laying hen diet and produce improved and stable formula than Genetic Algorithm, Hybridization of Adaptive Genetic Algorithm and Simulated Annealing, and Standard Particle Swarm Optimization with less time complexity. In addition, swarm size, iteration, and inertia weight parameters are investigated and show that swarm size of 50 for each sub-swarm, total iteration of 16,000, and inertia weight of 6.0 should be used as a good parameter for MSPSO to optimize laying hen diet

    Hybridization of modified sine cosine algorithm with tabu search for solving quadratic assignment problem

    Get PDF
    Sine Cosine Algorithm (SCA) is a population-based metaheuristic method that widely used to solve various optimization problem due to its ability in stabilizing between exploration and exploitation. However, SCA is rarely used to solve discrete optimization problem such as Quadratic Assignment Problem (QAP) due to the nature of its solution which produce continuous values and makes it challenging in solving discrete optimization problem. The SCA is also found to be trapped in local optima since its lacking in memorizing the moves. Besides, local search strategy is required in attaining superior results and it is usually designed based on the problem under study. Hence, this study aims to develop a hybrid modified SCA with Tabu Search (MSCA-TS) model to solve QAP. In QAP, a set of facilities is assigned to a set of locations to form a one-to-one assignment with minimum assignment cost. Firstly, the modified SCA (MSCA) model with cost-based local search strategy is developed. Then, the MSCA is hybridized with TS to prohibit revisiting the previous solutions. Finally, both designated models (MSCA and MSCA-TS) were tested on 60 QAP instances from QAPLIB. A sensitivity analysis is also performed to identify suitable parameter settings for both models. Comparison of results shows that MSCA-TS performs better than MSCA. The percentage of error and standard deviation for MSCA-TS are lower than the MSCA which are 2.4574 and 0.2968 respectively. The computational results also shows that the MSCA-TS is an effective and superior method in solving QAP when compared to the best-known solutions presented in the literature. The developed models may assist decision makers in searching the most suitable assignment for facilities and locations while minimizing cost

    An analysis on the applicability of meta-heuristic searching techniques for automated test data generation in automatic programming assessment

    Get PDF
    Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient testing. Nonetheless, thus far the researches on APA have not yet usefully exploited the techniques accordingly to include a better quality program testing coverage. Therefore, this study has conducted a comparative evaluation to identify any applicable MHST to support efficient Automated Test Data Generation (ATDG) in executing a dynamic-functional testing in APA. Several recent MHST are included in the comparative evaluation combining both the local and global search algorithms ranging from the year of 2000 until 2018. Result of this study suggests that the hybridization of Cuckoo Search with Tabu Search and lévy flight as one of promising MHST to be applied, as it’s outperforms other MHST with regards to number of iterations and range of inputs

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    A modified migrating bird optimization for university course timetabling problem

    Get PDF
    University course timetabling problem is a dilemma which educational institutions are facing due to various demands to be achieved in limited resources. Migrating bird optimization (MBO) algorithm is a new meta-heuristic algorithm which is inspired by flying formation of migrating birds. It has been applied successfully in tackling quadratic assignment problem and credit cards fraud detection problem. However, it was reported that MBO will get stuck in local optima easily. Therefore, a modified migrating bird optimization algorithm is proposed to solve post enrolment-based course timetabling. An improved neighbourhood sharing mechanism is used with the aim of escaping from local optima. Besides that, iterated local search is selected to be hybridized with the migrating bird optimization in order to further enhance its exploitation ability. The proposed method was tested using Socha’s benchmark datasets. The experimental results show that the proposed method outperformed the basic MBO and it is capable of producing comparable results as compared with existing methods that have been presented in literature. Indeed, the proposed method is capable of addressing university course timetabling problem and promising results were obtained

    Phylogenetics, Population Genetics, and Evolution of the Mallard Complex

    Get PDF
    Speciation is primarily regarded as an ancestral split that results in two distinct taxonomic units, and proceeds in stages along a continuum from initiation (i.e., population divergence) to completion (i.e., reproductively isolated species). Establishing how and why populations diverge, including the primary mechanisms influencing these events is a major objective for evolutionary scientists. Focusing on incipient forms, researchers attempt to disentangle the antagonistic nature of selection, genetic drift, and gene flow in the speciation process. In chapter 1, I investigate the phylogenetic relationships of 14 closely related taxa within the mallard complex (Anas spp.) that underwent a radiation within the past one million years. Using mitochondrial DNA (mtDNA) and 20 nuclear loci for one to five individuals per taxon, I further examine how recombination and hybridization affect species tree reconstructions. In general, relationships within major clades were robust to treatment of recombination (i.e., ignoring or filtering) and inclusion or exclusion of hybridizing taxa, but branch lengths and posterior support were sensitive to both treatments. Of the 14 taxa, the most confounded relationships were those within the New World (NW) group comprising the sexually dichromatic mallard (Anas platyrhynchos) and the monochromatic American black duck (A. rubripes; black duck ), mottled duck (A. fulvigula), and Mexican duck (A. [p.] diazi). Finally, I address discordance between nuclear, morphometric, and mitochondrial trees, particularly with regard to the placement of the Hawaiian duck (A. wyvilliana), Philippine duck (A. luzonica), and two spot-billed ducks (A. zonorhyncha and A. poecilorhyncha) and discuss how alternative modes of speciation (i.e., hybrid speciation) may lead to variance in these relationships. In Chapter 2, I attempt to disentangle the evolutionary relationships of the New World (NW) group using mtDNA and 17 nuclear loci for a larger per taxon sample size (24-25 individuals per taxon). In general, whereas both Florida and Gulf Coast mottled ducks were differentiated from one another and from the other taxa (mean ΦST = 0.024 - 0.064), mallards, American black ducks, and Mexican duck were not significantly differentiated among nuclear markers (mean ΦST \u3c 0.020). Using coalescent methods to estimate rates of gene flow between mallards and each of the monochromatic taxa generally supported hybridization, but I could not reject complete isolation for any pairwise comparison. Furthermore, species tree reconstructions revealed that phylogenetic relationships were sensitive to stochastic sampling of individuals likely due to incomplete lineage sorting or hybridization. I conclude that members of the NW Mallard group appear to be adaptive incipient morphs, and that future work should focus on genomic regions under selection to better understand the stage and process of speciation in this group. In Chapter 3, I use restriction site associated DNA (RAD) sequencing methods to generate a pseudorandom sampling of 3,563 autosomal and 172 sex-linked (Z chromosome) markers scattered across the genome to more rigorously test the mechanism of speciation between Mexican ducks (N = 105 individuals from six Mexican states and two US states) and mallards (N = 17). Specifically, I aim to determine the stage of speciation and whether speciation has been driven by few loci with large effects versus many loci with small effects, plumage associated differentiation, or genetic drift. Marker comparisons between mallards and Mexican ducks revealed strong discordance among autosomal ΦST = 0.014), sex-linked (mean ΦST = 0.091), and mtDNA (ΦST = 0.12) markers. In general, divergence at autosomal loci followed a stepping stone model, with a gradual transition in genotypic frequencies from North to South
    corecore