440 research outputs found

    Hybridization as Cooperative Parallelism for the Quadratic Assignment Problem

    No full text
    International audienceThe Quadratic Assignment Problem is at the core of several real-life applications. Finding an optimal assignment is computationally very difficult, for many useful instances. The best results are obtained with hybrid heuristics, which result in complex solvers. We propose an alternate solution where hybridization is obtain by means of parallelism and cooperation between simple single-heuristic solvers. We present experimental evidence that this approach is very efficient and can effectively solve a wide variety of hard problems, often surpassing state-of-the-art systems

    Process Planning Optimization In Reconfigurable Manufacturing Systems

    Get PDF
    Trends and perspectives in dynamic environments point towards a need for optimal operating levels in reconfigurable manufacturing activities. Central to the goal of meeting this need is the issue of appropriate techniques for manufacturing process planning optimization in reconfigurable manufacturing, i.e. (i) what decision making models and (ii) what computational techniques, provide an optimal manufacturing process planning solution in a multidimensional decision variables space? Conventional optimization techniques are not robust, hence; they are not suitable for handling multidimensional search spaces. On the other hand, process planning optimization for reconfigurable manufacturing is not amenable to classical modeling approaches due to the presence of complex system dynamics. Therefore, this study explores how to model reconfigurable manufacturing activities in an optimization perspective and how to develop and select appropriate non-conventional optimization techniques for reconfigurable process planning.In this study, a new approach to modeling Manufacturing Process Planning Optimization (MPPO) was developed by extending the concept of manufacturing optimization through a decoupled optimization method. The uniqueness of this approach lies in embedding an integrated scheduling function into a partially integrated process planning function in order to exploit the strategic potentials of flexibility and reconfigurability in manufacturing systems. Alternative MPPO models were constructed and variances associated with their utilization analyzed. Five (5) Alternative Algorithm Design Techniques (AADTs) were developed and investigated for suitability in providing process planning solutions suitable for reconfigurable manufacturing. The five (5) AADTs include; a variant of the simulated annealing algorithm that implements heuristic knowledge at critical decision points, two (2) cooperative search schemes based on a “loose hybridization” of the Boltzmann Machine algorithm with (i) simulated annealing, and (ii) genetic algorithm search techniques, and two (2) modified genetic algorithms. The comparative performances of the developed AADTs when tasked to solve an instance of a MPPO problem were analyzed and evaluated. In particular, the relative performances of the novel variant of simulated annealing in comparison to: (a) (i) a simulated annealing search, and (ii) a genetic search in the Boltzmann Machine Architecture, and (b) (i) a modified genetic algorithm and (ii) a genetic algorithm with a customized threshold operator that implements an innovative extension of the diversity control mechanism to gene and genome levels; were pursued in this thesis.Results show that all five (5) AADTs are capable of stable and asymptotic convergence to near optimal solutions in real time. Analysis indicates that the performances of the implemented variant of simulated annealing are comparable to those of other optimization techniques developed in this thesis. However, a computational study shows that; in comparison to the simulated annealing technique, significant improvements in optimization control performance and quality of computed solutions can be realized through implementing intelligent techniques. As evidenced by the relative performances of the implemented cooperative schemes, a genetic search is better than a simulated annealing search in the Boltzmann Machine Architecture. In addition, little performance gain can be realized through parallelism in the Boltzmann Machine Architecture. On the other hand, the superior performance of the genetic algorithm that implements an extended diversity control mechanism demonstrates that more competent genetic algorithms can be designed through customized operators. Therefore, this study has revealed that extending manufacturing optimization concepts through a decoupled optimization method is an effective modeling approach that is capable of handling complex decision scenarios in reconfigurable manufacturing activities. The approach provides a powerful decision framework for process planning optimization activities of a multidimensional nature. Such an approach can be implemented more efficiently through intelligent techniques. Hence; intelligent techniques can be utilized in manufacturing process planning optimization strategies that aim to improve operating levels in reconfigurable manufacturing with the resultant benefits of improved performance levels

    ParadisEO-MO-GPU: a Framework for Parallel GPU-based Local Search Metaheuristics

    Get PDF
    International audienceIn this paper, we propose a pioneering framework called ParadisEO-MO-GPU for the reusable design and implementation of parallel local search metaheuristics (S- Metaheuristics) on Graphics Processing Units (GPU). We revisit the ParadisEO-MO software framework to allow its utilization on GPU accelerators focusing on the parallel iteration-level model, the major parallel model for S- Metaheuristics. It consists in the parallel exploration of the neighborhood of a problem solution. The challenge is on the one hand to rethink the design and implementation of this model optimizing the data transfer between the CPU and the GPU. On the other hand, the objective is to make the GPU as transparent as possible for the user minimizing his or her involvement in its management. In this paper, we propose solutions to this challenge as an extension of the ParadisEO framework. The first release of the new GPU-based ParadisEO framework has been experimented on the permuted perceptron problem. The preliminary results are convincing, both in terms of flexibility and easiness of reuse at implementation, and in terms of efficiency at execution on GPU

    Optimization of storage and picking systems in warehouses

    Get PDF
    La croissance du commerce électronique exige une hausse des performances des systèmes d'entreposage, qui sont maintenant repensés pour faire face à un volume massif de demandes à être satisfait le plus rapidement possible. Le système manuel et le système à robots mobile (SRM) sont parmi les plus utilisés pour ces activités. Le premier est un système centré sur l'humain pour réaliser des opérations complexes que les robots actuels ne peuvent pas effectuer. Cependant, les nouvelles générations de robots autonomes mènent à un remplacement progressif par le dernier pour augmenter la productivité. Quel que soit le système utilisé, plusieurs problèmes interdépendants doivent être résolus pour avoir des processus de stockage et de prélèvement efficaces. Les problèmes de stockage concernent les décisions d'où stocker les produits dans l'entrepôt. Les problèmes de prélèvement incluent le regroupement des commandes à exécuter ensemble et les itinéraires que les cueilleurs et les robots doivent suivre pour récupérer les produits demandés. Dans le système manuel, ces problèmes sont traditionnellement résolus à l'aide de politiques simples que les préparateurs peuvent facilement suivre. Malgré l'utilisation de robots, la même stratégie de solution est répliquée aux problèmes équivalents trouvés dans le SRM. Dans cette recherche, nous étudions les problèmes de stockage et de prélèvement rencontrés lors de la conception du système manuel et du SRM. Nous développons des outils d'optimisation pour aider à la prise de décision pour mettre en place leurs processus, en améliorant les mesures de performance typiques de ces systèmes. Certains problèmes traditionnels sont résolus avec des techniques améliorées, tandis que d'autres sont intégrés pour être résolus ensemble au lieu d'optimiser chaque sous-système de manière indépendante. Nous considérons d'abord un système manuel avec un ensemble connu de commandes et intégrons les décisions de stockage et de routage. Le problème intégré et certaines variantes tenant compte des politiques de routage communes sont modélisés mathématiquement. Une métaheuristique générale de recherche de voisinage variable est présentée pour traiter des instances de taille réelle. Des expériences attestent de l'efficience de la métaheuristique proposée par rapport aux modèles exacts et aux politiques de stockage communes. Lorsque les demandes futures sont incertaines, il est courant d'utiliser une stratégie de zonage qui divise la zone de stockage en zones et attribue les produits les plus demandés aux meilleures zones. Les tailles des zones sont à déterminer. Généralement, des dimensions arbitraires sont choisies, mais elles ignorent les caractéristiques de l'entrepôt et des demandes. Nous abordons le problème de dimensionnement des zones pour déterminer quels facteurs sont pertinents pour choisir de meilleures tailles de zone. Les données générées à partir de simulations exhaustives sont utilisées pour trainer quatre modèles de régression d'apprentissage automatique - moindres carrés ordinaire, arbre de régression, forêt aléatoire et perceptron multicouche - afin de prédire les dimensions optimales des zones en fonction de l'ensemble de facteurs pertinents identifiés. Nous montrons que tous les modèles entraînés suggèrent des dimensions sur mesure des zones qui performent meilleur que les dimensions arbitraires couramment utilisées. Une autre approche pour résoudre les problèmes de stockage pour le système manuel et pour le SRM considère les corrélations entre les produits. L'idée est que les produits régulièrement demandés ensemble doivent être stockés près pour réduire les coûts de routage. Cette politique de stockage peut être modélisée comme une variante du problème d'affectation quadratique (PAQ). Le PAQ est un problème combinatoire traditionnel et l'un des plus difficiles à résoudre. Nous examinons les variantes les plus connues du PAQ et développons une puissante métaheuristique itérative de recherche tabou mémétique en parallèle capable de les résoudre. La métaheuristique proposée s'avère être parmi les plus performantes pour le PAQ et surpasse considérablement l'état de l'art pour ses variantes. Les SRM permettent de repositionner facilement les pods d'inventaire pendant les opérations, ce qui peut conduire à un processus de prélèvement plus économe en énergie. Nous intégrons les décisions de repositionnement des pods à l'attribution des commandes et à la sélection des pods à l'aide d'une stratégie de prélèvement par vague. Les pods sont réorganisés en tenant compte du moment et de l'endroit où ils devraient être demandés au futur. Nous résolvons ce problème en utilisant la programmation stochastique en tenant compte de l'incertitude sur les demandes futures et suggérons une matheuristique de recherche locale pour résoudre des instances de taille réelle. Nous montrons que notre schéma d'approximation moyenne de l'échantillon est efficace pour simuler les demandes futures puisque nos méthodes améliorent les solutions trouvées lorsque les vagues sont planifiées sans tenir compte de l'avenir. Cette thèse est structurée comme suit. Après un chapitre d'introduction, nous présentons une revue de la littérature sur le système manuel et le SRM, et les décisions communes prises pour mettre en place leurs processus de stockage et de prélèvement. Les quatre chapitres suivants détaillent les études pour le problème de stockage et de routage intégré, le problème de dimensionnement des zones, le PAQ et le problème de repositionnement de pod. Nos conclusions sont résumées dans le dernier chapitre.The rising of e-commerce is demanding an increase in the performance of warehousing systems, which are being redesigned to deal with a mass volume of demands to be fulfilled as fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are among the most commonly used for these activities. The former is a human-centered system that handles complex operations that current robots cannot perform. However, newer generations of autonomous robots are leading to a gradual replacement by the latter to increase productivity. Regardless of the system used, several interdependent problems have to be solved to have efficient storage and picking processes. Storage problems concern decisions on where to store products within the warehouse. Picking problems include the batching of orders to be fulfilled together and the routes the pickers and robots should follow to retrieve the products demanded. In the manual system, these problems are traditionally solved using simple policies that pickers can easily follow. Despite using robots, the same solution strategy is being replicated to the equivalent problems found in the RMFS. In this research, we investigate storage and picking problems faced when designing manual and RMFS warehouses. We develop optimization tools to help in the decision-making process to set up their processes and improve typical performance measures considered in these systems. Some classic problems are solved with improved techniques, while others are integrated to be solved together instead of optimizing each subsystem sequentially. We first consider a manual system with a known set of orders and integrate storage and routing decisions. The integrated problem and some variants considering common routing policies are modeled mathematically. A general variable neighborhood search metaheuristic is presented to deal with real-size instances. Computational experiments attest to the effectiveness of the metaheuristic proposed compared to the exact models and common storage policies. When future demands are uncertain, it is common to use a zoning strategy to divide the storage area into zones and assign the most-demanded products to the best zones. Zone sizes are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics of the warehouse and the demands. We approach the zone sizing problem to determine which factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations are used to train four machine learning regression models - ordinary least squares, regression tree, random forest, and multilayer perceptron - to predict the optimal zone sizes given the set of relevant factors identified. We show that all trained models suggest tailor-made zone sizes with better picking performance than the arbitrary ones commonly used. Another approach to solving storage problems, both in the manual and RMFS, considers the correlations between products. The idea is that products constantly demanded together should be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one of the hardest to solve. We survey the most traditional QAP variants and develop a powerful parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed metaheuristic is shown to be among the best performing ones for the QAP and significantly outperforms the state-of-the-art for its variants. The RMFS allows easy repositioning of inventory pods during operations that can lead to a more energy-efficient picking process. We integrate pod repositioning decisions with order assignment and pod selection using a wave picking strategy such that pods are parked after being requested considering when and where they are expected to be requested next. We solve this integrated problem using stochastic programming considering the uncertainty about future demands and suggest a local search matheuristic to solve real-size instances. We show that our sample average approximation scheme is effective to simulate future demands since our methods improve solutions found when waves are planned without considering the future demands. This thesis is structured as follows. After an introductory chapter, we present a literature review on the manual and RMFS, and common decisions made to set up their storage and picking processes. The next four chapters detail the studies for the integrated storage and routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our findings are summarized in the last chapter

    GPU parallelization strategies for metaheuristics: a survey

    Get PDF
    Metaheuristics have been showing interesting results in solving hard optimization problems. However, they become limited in terms of effectiveness and runtime for high dimensional problems. Thanks to the independency of metaheuristics components, parallel computing appears as an attractive choice to reduce the execution time and to improve solution quality. By exploiting the increasing performance and programability of graphics processing units (GPUs) to this aim, GPU-based parallel metaheuristics have been implemented using different designs. RecentresultsinthisareashowthatGPUstendtobeeffectiveco-processors forleveraging complex optimization problems.In thissurvey, mechanisms involvedinGPUprogrammingforimplementingparallelmetaheuristicsare presentedanddiscussedthroughastudyofrelevantresearchpapers. Metaheuristics can obtain satisfying results when solving optimization problems in a reasonable time. However, they suffer from the lack of scalability. Metaheuristics become limited ahead complex highdimensional optimization problems. To overcome this limitation, GPU based parallel computing appears as a strong alternative. Thanks to GPUs, parallelmetaheuristicsachievedbetterresultsintermsofcomputation,and evensolutionquality

    Parallel transfer evolution algorithm

    Get PDF
    Parallelization of an evolutionary algorithm takes the advantage of modular population division and information exchange among multiple processors. However, existing parallel evolutionary algorithms are rather ad hoc and lack a capability of adapting to diverse problems. To accommodate a wider range of problems and to reduce algorithm design costs, this paper develops a parallel transfer evolution algorithm. It is based on the island-model of parallel evolutionary algorithm and, for improving performance, transfers both the connections and the evolutionary operators from one sub-population pair to another adaptively. Needing no extra upper selection strategy, each sub-population is able to select autonomously evolutionary operators and local search operators as subroutines according to both the sub-population's own and the connected neighbor's ranking boards. The parallel transfer evolution is tested on two typical combinatorial optimization problems in comparison with six existing ad-hoc evolutionary algorithms, and is also applied to a real-world case study in comparison with five typical parallel evolutionary algorithms. The tests show that the proposed scheme and the resultant PEA offer high flexibility in dealing with a wider range of combinatorial optimization problems without algorithmic modification or redesign. Both the topological transfer and the algorithmic transfer are seen applicable not only to combinatorial optimization problems, but also to non-permutated complex problems

    Parallel optimization algorithms for high performance computing : application to thermal systems

    Get PDF
    The need of optimization is present in every field of engineering. Moreover, applications requiring a multidisciplinary approach in order to make a step forward are increasing. This leads to the need of solving complex optimization problems that exceed the capacity of human brain or intuition. A standard way of proceeding is to use evolutionary algorithms, among which genetic algorithms hold a prominent place. These are characterized by their robustness and versatility, as well as their high computational cost and low convergence speed. Many optimization packages are available under free software licenses and are representative of the current state of the art in optimization technology. However, the ability of optimization algorithms to adapt to massively parallel computers reaching satisfactory efficiency levels is still an open issue. Even packages suited for multilevel parallelism encounter difficulties when dealing with objective functions involving long and variable simulation times. This variability is common in Computational Fluid Dynamics and Heat Transfer (CFD & HT), nonlinear mechanics, etc. and is nowadays a dominant concern for large scale applications. Current research in improving the performance of evolutionary algorithms is mainly focused on developing new search algorithms. Nevertheless, there is a vast knowledge of sequential well-performing algorithmic suitable for being implemented in parallel computers. The gap to be covered is efficient parallelization. Moreover, advances in the research of both new search algorithms and efficient parallelization are additive, so that the enhancement of current state of the art optimization software can be accelerated if both fronts are tackled simultaneously. The motivation of this Doctoral Thesis is to make a step forward towards the successful integration of Optimization and High Performance Computing capabilities, which has the potential to boost technological development by providing better designs, shortening product development times and minimizing the required resources. After conducting a thorough state of the art study of the mathematical optimization techniques available to date, a generic mathematical optimization tool has been developed putting a special focus on the application of the library to the field of Computational Fluid Dynamics and Heat Transfer (CFD & HT). Then the main shortcomings of the standard parallelization strategies available for genetic algorithms and similar population-based optimization methods have been analyzed. Computational load imbalance has been identified to be the key point causing the degradation of the optimization algorithm¿s scalability (i.e. parallel efficiency) in case the average makespan of the batch of individuals is greater than the average time required by the optimizer for performing inter-processor communications. It occurs because processors are often unable to finish the evaluation of their queue of individuals simultaneously and need to be synchronized before the next batch of individuals is created. Consequently, the computational load imbalance is translated into idle time in some processors. Several load balancing algorithms have been proposed and exhaustively tested, being extendable to any other population-based optimization method that needs to synchronize all processors after the evaluation of each batch of individuals. Finally, a real-world engineering application that consists on optimizing the refrigeration system of a power electronic device has been presented as an illustrative example in which the use of the proposed load balancing algorithms is able to reduce the simulation time required by the optimization tool.El aumento de las aplicaciones que requieren de una aproximación multidisciplinar para poder avanzar se constata en todos los campos de la ingeniería, lo cual conlleva la necesidad de resolver problemas de optimización complejos que exceden la capacidad del cerebro humano o de la intuición. En estos casos es habitual el uso de algoritmos evolutivos, principalmente de los algoritmos genéticos, caracterizados por su robustez y versatilidad, así como por su gran coste computacional y baja velocidad de convergencia. La multitud de paquetes de optimización disponibles con licencias de software libre representan el estado del arte actual en tecnología de optimización. Sin embargo, la capacidad de adaptación de los algoritmos de optimización a ordenadores masivamente paralelos alcanzando niveles de eficiencia satisfactorios es todavía una tarea pendiente. Incluso los paquetes adaptados al paralelismo multinivel tienen dificultades para gestionar funciones objetivo que requieren de tiempos de simulación largos y variables. Esta variabilidad es común en la Dinámica de Fluidos Computacional y la Transferencia de Calor (CFD & HT), mecánica no lineal, etc. y es una de las principales preocupaciones en aplicaciones a gran escala a día de hoy. La investigación actual que tiene por objetivo la mejora del rendimiento de los algoritmos evolutivos está enfocada principalmente al desarrollo de nuevos algoritmos de búsqueda. Sin embargo, ya se conoce una gran variedad de algoritmos secuenciales apropiados para su implementación en ordenadores paralelos. La tarea pendiente es conseguir una paralelización eficiente. Además, los avances en la investigación de nuevos algoritmos de búsqueda y la paralelización son aditivos, por lo que el proceso de mejora del software de optimización actual se verá incrementada si se atacan ambos frentes simultáneamente. La motivación de esta Tesis Doctoral es avanzar hacia una integración completa de las capacidades de Optimización y Computación de Alto Rendimiento para así impulsar el desarrollo tecnológico proporcionando mejores diseños, acortando los tiempos de desarrollo del producto y minimizando los recursos necesarios. Tras un exhaustivo estudio del estado del arte de las técnicas de optimización matemática disponibles a día de hoy, se ha diseñado una librería de optimización orientada al campo de la Dinámica de Fluidos Computacional y la Transferencia de Calor (CFD & HT). A continuación se han analizado las principales limitaciones de las estrategias de paralelización disponibles para algoritmos genéticos y otros métodos de optimización basados en poblaciones. En el caso en que el tiempo de evaluación medio de la tanda de individuos sea mayor que el tiempo medio que necesita el optimizador para llevar a cabo comunicaciones entre procesadores, se ha detectado que la causa principal de la degradación de la escalabilidad o eficiencia paralela del algoritmo de optimización es el desequilibrio de la carga computacional. El motivo es que a menudo los procesadores no terminan de evaluar su cola de individuos simultáneamente y deben sincronizarse antes de que se cree la siguiente tanda de individuos. Por consiguiente, el desequilibrio de la carga computacional se convierte en tiempo de inactividad en algunos procesadores. Se han propuesto y testado exhaustivamente varios algoritmos de equilibrado de carga aplicables a cualquier método de optimización basado en una población que necesite sincronizar los procesadores tras cada tanda de evaluaciones. Finalmente, se ha presentado como ejemplo ilustrativo un caso real de ingeniería que consiste en optimizar el sistema de refrigeración de un dispositivo de electrónica de potencia. En él queda demostrado que el uso de los algoritmos de equilibrado de carga computacional propuestos es capaz de reducir el tiempo de simulación que necesita la herramienta de optimización

    Enhanced parallel Differential Evolution algorithm for problems in computational systems biology

    Get PDF
    [Abstract] Many key problems in computational systems biology and bioinformatics can be formulated and solved using a global optimization framework. The complexity of the underlying mathematical models require the use of efficient solvers in order to obtain satisfactory results in reasonable computation times. Metaheuristics are gaining recognition in this context, with Differential Evolution (DE) as one of the most popular methods. However, for most realistic applications, like those considering parameter estimation in dynamic models, DE still requires excessive computation times. Here we consider this latter class of problems and present several enhancements to DE based on the introduction of additional algorithmic steps and the exploitation of parallelism. In particular, we propose an asynchronous parallel implementation of DE which has been extended with improved heuristics to exploit the specific structure of parameter estimation problems in computational systems biology. The proposed method is evaluated with different types of benchmarks problems: (i) black-box global optimization problems and (ii) calibration of non-linear dynamic models of biological systems, obtaining excellent results both in terms of quality of the solution and regarding speedup and scalability.Ministerio de Economía y Competitividad; DPI2011-28112-C04-03Consejo Superior de Investigaciones Científicas; PIE-201170E018Ministerio de Ciencia e Innovación; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore