2,061 research outputs found

    Navigation and guidance requirements for commercial VTOL operations

    Get PDF
    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts

    Sense and Avoid Characterization of the Independent Configurable Architecture for Reliable Operations of Unmanned Systems

    Get PDF
    AbstractIndependent Configurable Architecture for Reliable Operations of Unmanned Systems (ICAROUS) is a distributed software architecture developed by NASA Langley Research Center to enable safe autonomous UAS operations. ICAROUS consists of a collection formally verified core algorithms for path planning, traffic avoidance, geofence handling, and decision making that interface with an autopilot system through a publisher-subscriber middleware. The ICAROUS Sense and Avoid Characterization (ISAAC) test was designed to evaluate the performance of the onboard Sense and Avoid (SAA) capability to detect potential conflicts with other aircraft and autonomously maneuver to avoid collisions, while remaining within the airspace boundaries of the mission. The ISAAC tests evaluated the impact of separation distances and alerting times on SAA performance. A preliminary analysis of the effects of each parameter on key measures of performance is conducted, informing the choice of appropriate parameter values for different small Unmanned Aircraft Systems (sUAS) applications. Furthermore, low-power Automatic Dependent Surveillance Broadcast (ADS-B) is evaluated for potential use to enable autonomous sUAS to sUAS deconflictions as well as to provide usable warnings for manned aircraft without saturating the frequency spectrum

    A Study of Future Communications Concepts and Technologies for the National Airspace System - Part IV

    Get PDF
    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present the final results describing the communications challenges and opportunities that have been identified as part of the study

    Impact of Pilot Delay and Non-Responsiveness on the Safety Performance of Airborne Separation

    Get PDF
    Assessing the safety effects of prediction errors and uncertainty on automationsupported functions in the Next Generation Air Transportation System concept of operations is of foremost importance, particularly safety critical functions such as separation that involve human decision-making. Both ground-based and airborne, the automation of separation functions must be designed to account for, and mitigate the impact of, information uncertainty and varying human response. This paper describes an experiment that addresses the potential impact of operator delay when interacting with separation support systems. In this study, we evaluated an airborne separation capability operated by a simulated pilot. The experimental runs are part of the Safety Performance of Airborne Separation (SPAS) experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assistance systems. Pilot actions required by the airborne separation automation to resolve traffic conflicts were delayed within a wide range, varying from five to 240 seconds while a percentage of randomly selected pilots were programmed to completely miss the conflict alerts and therefore take no action. Results indicate that the strategicAirborne Separation Assistance System (ASAS) functions exercised in the experiment can sustain pilot response delays of up to 90 seconds and more, depending on the traffic density. However, when pilots or operators fail to respond to conflict alerts the safety effects are substantial, particularly at higher traffic densities
    • …
    corecore