4,845 research outputs found

    Evaluating Software Architectures: Development Stability and Evolution

    Get PDF
    We survey seminal work on software architecture evaluationmethods. We then look at an emerging class of methodsthat explicates evaluating software architectures forstability and evolution. We define architectural stabilityand formulate the problem of evaluating software architecturesfor stability and evolution. We draw the attention onthe use of Architectures Description Languages (ADLs) forsupporting the evaluation of software architectures in generaland for architectural stability in specific

    Hybrid intelligent model for software maintenance prediction

    Get PDF
    Maintenance is an important activity in the software life cycle. No software product can do without undergoing the process of maintenance. Estimating a software’s maintainability effort and cost is not an easy task considering the various factors that influence the proposed measurement. Hence, Artificial Intelligence (AI) techniques have been used extensively to find optimized and more accurate maintenance estimations. In this paper, we propose an Evolutionary Neural Network (NN) model to predict software maintainability. The proposed model is based on a hybrid intelligent technique wherein a neural network is trained for prediction and a genetic algorithm (GA) implementation is used for evolving the neural network topology until an optimal topology is reached. The model was applied on a popular open source program, namely, Android. The results are very promising, where the correlation between actual and predicted points reaches 0.9

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Issues in knowledge representation to support maintainability: A case study in scientific data preparation

    Get PDF
    Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings

    A Multiple Criteria Decision Analysis based Approach to Remove Uncertainty in SMP Models

    Full text link
    Advanced AI technologies are serving humankind in a number of ways, from healthcare to manufacturing. Advanced automated machines are quite expensive, but the end output is supposed to be of the highest possible quality. Depending on the agility of requirements, these automation technologies can change dramatically. The likelihood of making changes to automation software is extremely high, so it must be updated regularly. If maintainability is not taken into account, it will have an impact on the entire system and increase maintenance costs. Many companies use different programming paradigms in developing advanced automated machines based on client requirements. Therefore, it is essential to estimate the maintainability of heterogeneous software. As a result of the lack of widespread consensus on software maintainability prediction (SPM) methodologies, individuals and businesses are left perplexed when it comes to determining the appropriate model for estimating the maintainability of software, which serves as the inspiration for this research. A structured methodology was designed, and the datasets were preprocessed and maintainability index (MI) range was also found for all the datasets expect for UIMS and QUES, the metric CHANGE is used for UIMS and QUES. To remove the uncertainty among the aforementioned techniques, a popular multiple criteria decision-making model, namely the technique for order preference by similarity to ideal solution (TOPSIS), is used in this work. TOPSIS revealed that GARF outperforms the other considered techniques in predicting the maintainability of heterogeneous automated software.Comment: Submitted for peer revie

    Quality attributes for mobile applications

    Get PDF
    A mobile application is a type of software application developed to run on a mobile device. The chapter discusses the main characteristics of mobile devices, since they have a great impact on mobile applications. It also presents the classification of mobile applications according to two main types: native and web-based applications. Finally, this chapter identifies the most relevant types of quality attributes for mobile applications. It shows that the relevant quality attributes for mobile applications are usually framed in the Usability, Performance, and Maintainability and Support categories.(undefined

    Evaluation of the Performance of Telecommunication Systems by Approach of Hybrid Stochastic Automata Combined With Neuro-Fuzzy Networks

    Get PDF
    This paper presents a functional and dysfunctional behavioral study of a telecommunication system, with the aim to evaluate the performance of its constituent units. It is question of taking advantage offered by artificial intelligence in order to evaluate by modeling and simulation in system reliability. The methodological approach consists in combining ANFIS neuro-fuzzy networks with hybrid stochastic automata. The Neuro-Fuzzy ANFIS networks provide a prediction for the passage from nominal mode to degraded mode, by controlling the occurrence of malfunctions at transient levels. This allows to anticipate the occurrence of events degrading system performance, such as failures and disturbances. The objective is to maintain the system in nominal operating mode and prevent its tipping in degraded mode. The results are implanted around a demonstrator based on Scilab, and implemented on Matlab / Simulink

    Interactive specification acquisition via scenarios: A proposal

    Get PDF
    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT
    • 

    corecore