937 research outputs found

    Learning Similarity Attention

    Full text link
    We consider the problem of learning similarity functions. While there has been substantial progress in learning suitable distance metrics, these techniques in general lack decision reasoning, i.e., explaining why the input set of images is similar or dissimilar. In this work, we solve this key problem by proposing the first method to generate generic visual similarity explanations with gradient-based attention. We demonstrate that our technique is agnostic to the specific similarity model type, e.g., we show applicability to Siamese, triplet, and quadruplet models. Furthermore, we make our proposed similarity attention a principled part of the learning process, resulting in a new paradigm for learning similarity functions. We demonstrate that our learning mechanism results in more generalizable, as well as explainable, similarity models. Finally, we demonstrate the generality of our framework by means of experiments on a variety of tasks, including image retrieval, person re-identification, and low-shot semantic segmentation.Comment: 10 pages, 7 figures, 4 table

    Less than Few: Self-Shot Video Instance Segmentation

    Get PDF
    The goal of this paper is to bypass the need for labelled examples in few-shot video understanding at run time. While proven effective, in many practical video settings even labelling a few examples appears unrealistic. This is especially true as the level of details in spatio-temporal video understanding and with it, the complexity of annotations continues to increase. Rather than performing few-shot learning with a human oracle to provide a few densely labelled support videos, we propose to automatically learn to find appropriate support videos given a query. We call this self-shot learning and we outline a simple self-supervised learning method to generate an embedding space well-suited for unsupervised retrieval of relevant samples. To showcase this novel setting, we tackle, for the first time, video instance segmentation in a self-shot (and few-shot) setting, where the goal is to segment instances at the pixel-level across the spatial and temporal domains. We provide strong baseline performances that utilize a novel transformer-based model and show that self-shot learning can even surpass few-shot and can be positively combined for further performance gains. Experiments on new benchmarks show that our approach achieves strong performance, is competitive to oracle support in some settings, scales to large unlabelled video collections, and can be combined in a semi-supervised setting.Comment: 25 pages, 5 figures, 13 table

    Image Captioning with Unseen Objects

    Full text link
    Image caption generation is a long standing and challenging problem at the intersection of computer vision and natural language processing. A number of recently proposed approaches utilize a fully supervised object recognition model within the captioning approach. Such models, however, tend to generate sentences which only consist of objects predicted by the recognition models, excluding instances of the classes without labelled training examples. In this paper, we propose a new challenging scenario that targets the image captioning problem in a fully zero-shot learning setting, where the goal is to be able to generate captions of test images containing objects that are not seen during training. The proposed approach jointly uses a novel zero-shot object detection model and a template-based sentence generator. Our experiments show promising results on the COCO dataset.Comment: To appear in British Machine Vision Conference (BMVC) 201

    Symbolic Discovery of Optimization Algorithms

    Full text link
    We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, Lion\textbf{Lion} (\textit{Evo\textbf{L}vedSved S\textbf{i}gnMgn M\textbf{o}meme\textbf{n}tum}). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot\textit{zero-shot} and 91.1% fine-tuning\textit{fine-tuning} accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. The implementation of Lion is publicly available.Comment: 30 pages, update the tuning instruction
    • …
    corecore