3,871 research outputs found

    Smart Localization Using a New Sensor Association Framework for Outdoor Augmented Reality Systems

    Get PDF
    Augmented Reality (AR) aims at enhancing our the real world, by adding fictitious elements that are not perceptible naturally such as: computer-generated images, virtual objects, texts, symbols, graphics, sounds, and smells. The quality of the real/virtual registration depends mainly on the accuracy of the 3D camera pose estimation. In this paper, we present an original real-time localization system for outdoor AR which combines three heterogeneous sensors: a camera, a GPS, and an inertial sensor. The proposed system is subdivided into two modules: the main module is vision based; it estimates the userā€™s location using a markerless tracking method. When the visual tracking fails, the system switches automatically to the secondary localization module composed of the GPS and the inertial sensor

    Mixed Reality on Mobile Devices

    Get PDF

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    IntegraĆ§Ć£o de localizaĆ§Ć£o baseada em movimento na aplicaĆ§Ć£o mĆ³vel EduPARK

    Get PDF
    More and more, mobile applications require precise localization solutions in a variety of environments. Although GPS is widely used as localization solution, it may present some accuracy problems in special conditions such as unfavorable weather or spaces with multiple obstructions such as public parks. For these scenarios, alternative solutions to GPS are of extreme relevance and are widely studied recently. This dissertation studies the case of EduPARK application, which is an augmented reality application that is implemented in the Infante D. Pedro park in Aveiro. Due to the poor accuracy of GPS in this park, the implementation of positioning and marker-less augmented reality functionalities presents difficulties. Existing relevant systems are analyzed, and an architecture based on pedestrian dead reckoning is proposed. The corresponding implementation is presented, which consists of a positioning solution using the sensors available in the smartphones, a step detection algorithm, a distance traveled estimator, an orientation estimator and a position estimator. For the validation of this solution, functionalities were implemented in the EduPARK application for testing purposes and usability tests performed. The results obtained show that the proposed solution can be an alternative to provide accurate positioning within the Infante D. Pedro park, thus enabling the implementation of functionalities of geocaching and marker-less augmented reality.Cada vez mais, as aplicaƧƵes mĆ³veis requerem soluƧƵes de localizaĆ§Ć£o precisa nos mais variados ambientes. Apesar de o GPS ser amplamente usado como soluĆ§Ć£o para localizaĆ§Ć£o, pode apresentar alguns problemas de precisĆ£o em condiƧƵes especiais, como mau tempo, ou espaƧos com vĆ”rias obstruƧƵes, como parques pĆŗblicos. Para estes casos, soluƧƵes alternativas ao GPS sĆ£o de extrema relevĆ¢ncia e veem sendo desenvolvidas. A presente dissertaĆ§Ć£o estuda o caso do projeto EduPARK, que Ć© uma aplicaĆ§Ć£o mĆ³vel de realidade aumentada para o parque Infante D. Pedro em Aveiro. Devido Ć  fraca precisĆ£o do GPS nesse parque, a implementaĆ§Ć£o de funcionalidades baseadas no posionamento e de realidade aumentada sem marcadores apresenta dificuldades. SĆ£o analisados sistemas relevantes existentes e Ć© proposta uma arquitetura baseada em localizaĆ§Ć£o de pedestres. Em seguida Ć© apresentada a correspondente implementaĆ§Ć£o, que consiste numa soluĆ§Ć£o de posicionamento usando os sensores disponiveis nos smartphones, um algoritmo de deteĆ§Ć£o de passos, um estimador de distĆ¢ncia percorrida, um estimador de orientaĆ§Ć£o e um estimador de posicionamento. Para a validaĆ§Ć£o desta soluĆ§Ć£o, foram implementadas funcionalidades na aplicaĆ§Ć£o EduPARK para fins de teste, e realizados testes com utilizadores e testes de usabilidade. Os resultados obtidos demostram que a soluĆ§Ć£o proposta pode ser uma alternativa para a localizaĆ§Ć£o no interior do parque Infante D. Pedro, viabilizando desta forma a implementaĆ§Ć£o de funcionalidades baseadas no posicionamento e de realidade aumenta sem marcadores.EduPARK Ć© um projeto financiado por Fundos FEDER atravĆ©s do Programa Operacional Competitividade e InternacionalizaĆ§Ć£o - COMPETE 2020 e por Fundos Nacionais atravĆ©s da FCT - FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia no Ć¢mbito do projeto POCI-01-0145-FEDER-016542.Mestrado em Engenharia InformĆ”tic

    Homography-Based State Estimation for Autonomous Exploration in Unknown Environments

    Get PDF
    This thesis presents the development of vision-based state estimation algorithms to enable a quadcopter UAV to navigate and explore a previously unknown GPS denied environment. These state estimation algorithms are based on tracked Speeded-Up Robust Features (SURF) points and the homography relationship that relates the camera motion to the locations of tracked planar feature points in the image plane. An extended Kalman filter implementation is developed to perform sensor fusion using measurements from an onboard inertial measurement unit (accelerometers and rate gyros) with vision-based measurements derived from the homography relationship. Therefore, the measurement update in the filter requires the processing of images from a monocular camera to detect and track planar feature points followed by the computation of homography parameters. The state estimation algorithms are designed to be independent of GPS since GPS can be unreliable or unavailable in many operational environments of interest such as urban environments. The state estimation algorithms are implemented using simulated data from a quadcopter UAV and then tested using post processed video and IMU data from flights of an autonomous quadcopter. The homography-based state estimation algorithm was effective, but accumulates drift errors over time due to the relativistic homography measurement of position

    Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose Regression and Odometry-aided Absolute Pose Regression

    Full text link
    Visual-inertial localization is a key problem in computer vision and robotics applications such as virtual reality, self-driving cars, and aerial vehicles. The goal is to estimate an accurate pose of an object when either the environment or the dynamics are known. Recent methods directly regress the pose using convolutional and spatio-temporal networks. Absolute pose regression (APR) techniques predict the absolute camera pose from an image input in a known scene. Odometry methods perform relative pose regression (RPR) that predicts the relative pose from a known object dynamic (visual or inertial inputs). The localization task can be improved by retrieving information of both data sources for a cross-modal setup, which is a challenging problem due to contradictory tasks. In this work, we conduct a benchmark to evaluate deep multimodal fusion based on PGO and attention networks. Auxiliary and Bayesian learning are integrated for the APR task. We show accuracy improvements for the RPR-aided APR task and for the RPR-RPR task for aerial vehicles and hand-held devices. We conduct experiments on the EuRoC MAV and PennCOSYVIO datasets, and record a novel industry dataset.Comment: Under revie
    • ā€¦
    corecore