87 research outputs found

    Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    Get PDF
    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform(DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images.The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction

    Medical Image Classification Using the Discriminant Power Analysis (DPA) of Discrete Cosine Transform (DCT) Coefficients

    Get PDF
    Medical imaging systems are very important in medicine domain. They assist specialists to make the final decision about the patient’s condition, and strongly help in early cancer detection. The classification of mammogram images represents a very important operation to identify whether the breast cancer is benign or malignant. In this chapter, we propose a new computer aided diagnostic (CAD) system, which is composed of three steps. In the first step, the input image is pre-processed to remove the noise and artifacts and also to separate the breast profile from the pectoral muscle. This operation is a difficult task that can affect the final decision. For this reason, a hybrid segmentation method using the seeded region growing (SRG) algorithm applied on a localized triangular region has been proposed. In the second step, we have proposed a features extraction method based on the discrete cosine transform (DCT), where the processed images of the breast profiles are transformed by the DCT where the part containing the highest energy value is selected. Then, in the feature’s selection step, a new most discriminative power coefficients algorithm has been proposed to select the most significant features. In the final step of the proposed system, we have used the most known classifiers in the field of the image classification for evaluation. An effective classification has been made using the Support Vector Machines (SVM), Naive Bayes (NB), Artificial Neural Network (ANN) and k-Nearest Neighbors (KNN) classifiers. To evaluate the efficiency and to measure the performances of the proposed CAD system, we have selected the mini Mammographic Image Analysis Society (MIAS) database. The obtained results show the effectiveness of the proposed algorithm over others, which are recently proposed in the literature, whereas the new CAD reached an accuracy of 100%, in certain cases, with only a small set of selected features

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Intelligent Image Retrieval Techniques: A Survey

    Get PDF
    AbstractIn the current era of digital communication, the use of digital images has increased for expressing, sharing and interpreting information. While working with digital images, quite often it is necessary to search for a specific image for a particular situation based on the visual contents of the image. This task looks easy if you are dealing with tens of images but it gets more difficult when the number of images goes from tens to hundreds and thousands, and the same content-based searching task becomes extremely complex when the number of images is in the millions. To deal with the situation, some intelligent way of content-based searching is required to fulfill the searching request with right visual contents in a reasonable amount of time. There are some really smart techniques proposed by researchers for efficient and robust content-based image retrieval. In this research, the aim is to highlight the efforts of researchers who conducted some brilliant work and to provide a proof of concept for intelligent content-based image retrieval techniques

    Breast Density Estimation and Micro-Calcification Classification

    Get PDF
    • …
    corecore