2,980 research outputs found

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    A Novel QoS provisioning Scheme for OBS networks

    Get PDF
    This paper presents Classified Cloning, a novel QoS provisioning mechanism for OBS networks carrying real-time applications (such as video on demand, Voice over IP, online gaming and Grid computing). It provides such applications with a minimum loss rate while minimizing end-to-end delay and jitter. ns-2 has been used as the simulation tool, with new OBS modules having been developed for performance evaluation purposes. Ingress node performance has been investigated, as well as the overall performance of the suggested scheme. The results obtained showed that new scheme has superior performance to classical cloning. In particular, QoS provisioning offers a guaranteed burst loss rate, delay and expected value of jitter, unlike existing proposals for QoS implementation in OBS which use the burst offset time to provide such differentiation. Indeed, classical schemes increase both end-to-end delay and jitter. It is shown that the burst loss rate is reduced by 50% reduced over classical cloning

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    Service-Oriented Multigranular Optical Network Architecture for Clouds

    Get PDF
    This paper presents a novel service-oriented network architecture to bridge the informational gap between user applications and optical networks providing technology-agnostic multigranular optical network services for clouds. A mediation layer (service plane) between user applications and network control is proposed to facilitate a mapping process between user application requests and the network services. At the network level, a multigranular optical network (MGON) is proposed and implemented to support dynamic wavelength and subwavelength granularities with different transport formats [optical burst switched (OBS), optical burst transport (OBT)], reservation protocols (one-way, two-way), and different quality-of-service (QoS) levels per service type. The service-oriented multigranular optical network has been designed, implemented, and demonstrated on an experimental testbed. The testbed consists of service and network resource provisioning, service abstraction, and network resource virtualization. The service-to-network interoperation is provided by means of a gateway that maps service requests to technology-specific parameters and a common signaling channel for both service and network resource provisioning

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs
    corecore