11,985 research outputs found

    Hybrid sparse and low-rank time-frequency signal decomposition

    Get PDF
    International audienceWe propose a new hybrid (or morphological) generative model that decomposes a signal into two (and possibly more) layers. Each layer is a linear combination of localised atoms from a time-frequency dictionary. One layer has a low-rank time-frequency structure while the other as a sparse structure. The time-frequency resolutions of the dictionaries describing each layer may be different. Our contribution builds on the recently introduced Low-Rank Time-Frequency Synthesis (LRTFS) model and proposes an iterative algorithm similar to the popular iterative shrinkage/thresholding algorithm. We illustrate the capacities of the proposed model and estimation procedure on a tonal + transient audio decomposition example. Index Terms— Low-rank time-frequency synthesis, sparse component analysis, hybrid/morphological decom-positions, non-negative matrix factorisation

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms
    • …
    corecore