656 research outputs found

    High Order Maximum Principle Preserving Semi-Lagrangian Finite Difference WENO schemes for the Vlasov Equation

    Full text link
    In this paper, we propose the parametrized maximum principle preserving (MPP) flux limiter, originally developed in [Z. Xu, Math. Comp., (2013), in press], to the semi- Lagrangian finite difference weighted essentially non-oscillatory scheme for solving the Vlasov equation. The MPP flux limiter is proved to maintain up to fourth order accuracy for the semi-Lagrangian finite difference scheme without any time step restriction. Numerical studies on the Vlasov-Poisson system demonstrate the performance of the proposed method and its ability in preserving the positivity of the probability distribution function while maintaining the high order accuracy

    Conservative and non-conservative methods based on hermite weighted essentially-non-oscillatory reconstruction for Vlasov equations

    Get PDF
    We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual semi-Lagrangian method with cubic spline reconstruction and the classical fifth order WENO finite difference scheme. These reconstructions are observed to be less dissipative than the usual weighted essentially non- oscillatory procedure. We apply these methods to transport equations in the context of plasma physics and the numerical simulation of turbulence phenomena

    ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

    Full text link
    Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincar\'e invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.Comment: Code and illustration movies available at: http://www.vlasix.org/index.php?n=Main.ColDICE - Article submitted to Journal of Computational Physic

    Afterlive: A performant code for Vlasov-Hybrid simulations

    Full text link
    A parallelized implementation of the Vlasov-Hybrid method [Nunn, 1993] is presented. This method is a hybrid between a gridded Eulerian description and Lagrangian meta-particles. Unlike the Particle-in-Cell method [Dawson, 1983] which simply adds up the contribution of meta-particles, this method does a reconstruction of the distribution function ff in every time step for each species. This interpolation method combines meta-particles with different weights in such a way that particles with large weight do not drown out particles that represent small contributions to the phase space density. These core properties allow the use of a much larger range of macro factors and can thus represent a much larger dynamic range in phase space density. The reconstructed phase space density ff is used to calculate momenta of the distribution function such as the charge density ρ\rho. The charge density ρ\rho is also used as input into a spectral solver that calculates the self-consistent electrostatic field which is used to update the particles for the next time-step. Afterlive (A Fourier-based Tool in the Electrostatic limit for the Rapid Low-noise Integration of the Vlasov Equation) is fully parallelized using MPI and writes output using parallel HDF5. The input to the simulation is read from a JSON description that sets the initial particle distributions as well as domain size and discretization constraints. The implementation presented here is intentionally limited to one spatial dimension and resolves one or three dimensions in velocity space. Additional spatial dimensions can be added in a straight forward way, but make runs computationally even more costly.Comment: Accepted for publication in Computer Physics Communication

    GEMPIC: Geometric ElectroMagnetic Particle-In-Cell Methods

    Full text link
    We present a novel framework for Finite Element Particle-in-Cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from Finite Element Exterior Calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the Finite Element basis, as long as the corresponding Finite Element spaces satisfy certain compatibility conditions.Comment: 57 Page
    corecore