48,631 research outputs found

    Hybrid scheduling for the parallel solution of linear systems

    Get PDF
    In this paper, we consider the problem of designing a dynamic scheduling strategy that takes into account both workload and memory information in the context of the parallel multifrontal factorization. The originality of our approach is that we base our estimations (work and memory) on a static optimistic scenario during the analysis phase. This scenario is then used during the factorization phase to constrain the dynamic decisions. The task scheduler has been redesigned to take into account these new features. Moreover performance have been improved because the new constraints allow the new scheduler to make optimal decisions that were forbidden or too dangerous in unconstrained formulations. Performance analysis show that the memory estimation becomes much closer to the memory effectively used and that even in a constrained memory environment we decrease the factorization time with respect to the initial approach.Nous proposons des stratégies d'ordonnancement bi-critères, qui s'intéressent à la fois à la performance et à la consommation mémoire d'un algorithme parallèle de factorisation de matrices creuses, basé sur la méthode multifrontale. L'originalité de notre approche est que nous basons nos estimations mémoire sur un scénario optimiste (simulation lors de la phase d'analyse),qui est ensuite utilisé lors de la factorisation pour contraindre les décisions dynamiques d'ordonnancement. Un nouvel ordonnanceur a été implanté, qui prend en compte ces nouvelles contraintes. De plus, la performance a été améliorée parce que notre nouvelle approche permet à l'ordonnanceur de prendre des décisions meilleures, qui étaient interdites ou trop dangereuses auparavant. Une analyse de performance montre que les estimations mémoire sont beaucoup plus proches de la mémoire effectivement utilisée, et que le temps de factorisation est amélioré de façon significative par rapport à l'approche initiale

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Innovative systems for the transportation disadvantaged: towards more efficient and operationally usable planning tools

    Get PDF
    When considering innovative forms of public transport for specific groups, such as demand responsive services, the challenge is to find a good balance between operational efficiency and 'user friendliness' of the scheduling algorithm even when specialized skills are not available. Regret insertion-based processes have shown their effectiveness in addressing this specific concern. We introduce a new class of hybrid regret measures to understand better why the behaviour of this kind of heuristic is superior to that of other insertion rules. Our analyses show the importance of keeping a good balance between short- and long-term strategies during the solution process. We also use this methodology to investigate the relationship between the number of vehicles needed and total distance covered - the key point of any cost analysis striving for greater efficiency. Against expectations, in most cases decreasing fleet size leads to savings in vehicle mileage, since the heuristic solution is still far from optimality

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems
    • …
    corecore