43,315 research outputs found

    Hybrid query plan generation

    No full text
    http://ceur-ws.org/Vol-911 - Regular PaperInternational audienceA hybrid query is a requirement of data produced by data services and a set of QoS preferences w.r.t. the query execution. In this paper we present the problem of the hybrid query optimization and, in particular, the generation of a search space of hybrid query plans. We show how the constraints for generating hybrid query plans are modeled and validate these constraints by implementing them in an action language. We present graphs with experiment results that show the complexity of this generation

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Towards Efficient Path Query on Social Network with Hybrid RDF Management

    Full text link
    The scalability and exibility of Resource Description Framework(RDF) model make it ideally suited for representing online social networks(OSN). One basic operation in OSN is to find chains of relations,such as k-Hop friends. Property path query in SPARQL can express this type of operation, but its implementation suffers from performance problem considering the ever growing data size and complexity of OSN.In this paper, we present a main memory/disk based hybrid RDF data management framework for efficient property path query. In this hybrid framework, we realize an efficient in-memory algebra operator for property path query using graph traversal, and estimate the cost of this operator to cooperate with existing cost-based optimization. Experiments on benchmark and real dataset demonstrated that our approach can achieve a good tradeoff between data load expense and online query performance
    corecore