1,916 research outputs found

    Aggregated fuzzy answer set programming

    Get PDF
    Fuzzy Answer Set programming (FASP) is an extension of answer set programming (ASP), based on fuzzy logic. It allows to encode continuous optimization problems in the same concise manner as ASP allows to model combinatorial problems. As a result of its inherent continuity, rules in FASP may be satisfied or violated to certain degrees. Rather than insisting that all rules are fully satisfied, we may only require that they are satisfied partially, to the best extent possible. However, most approaches that feature partial rule satisfaction limit themselves to attaching predefined weights to rules, which is not sufficiently flexible for most real-life applications. In this paper, we develop an alternative, based on aggregator functions that specify which (combination of) rules are most important to satisfy. We extend upon previous work by allowing aggregator expressions to define partially ordered preferences, and by the use of a fixpoint semantics

    Non classical concept representation and reasoning in formal ontologies

    Get PDF
    Formal ontologies are nowadays widely considered a standard tool for knowledge representation and reasoning in the Semantic Web. In this context, they are expected to play an important role in helping automated processes to access information. Namely: they are expected to provide a formal structure able to explicate the relationships between different concepts/terms, thus allowing intelligent agents to interpret, correctly, the semantics of the web resources improving the performances of the search technologies. Here we take into account a problem regarding Knowledge Representation in general, and ontology based representations in particular; namely: the fact that knowledge modeling seems to be constrained between conflicting requirements, such as compositionality, on the one hand and the need to represent prototypical information on the other. In particular, most common sense concepts seem not to be captured by the stringent semantics expressed by such formalisms as, for example, Description Logics (which are the formalisms on which the ontology languages have been built). The aim of this work is to analyse this problem, suggesting a possible solution suitable for formal ontologies and semantic web representations. The questions guiding this research, in fact, have been: is it possible to provide a formal representational framework which, for the same concept, combines both the classical modelling view (accounting for compositional information) and defeasible, prototypical knowledge ? Is it possible to propose a modelling architecture able to provide different type of reasoning (e.g. classical deductive reasoning for the compositional component and a non monotonic reasoning for the prototypical one)? We suggest a possible answer to these questions proposing a modelling framework able to represent, within the semantic web languages, a multilevel representation of conceptual information, integrating both classical and non classical (typicality based) information. Within this framework we hypothesise, at least in principle, the coexistence of multiple reasoning processes involving the different levels of representation

    Subsethood Measures of Spatial Granules

    Full text link
    Subsethood, which is to measure the degree of set inclusion relation, is predominant in fuzzy set theory. This paper introduces some basic concepts of spatial granules, coarse-fine relation, and operations like meet, join, quotient meet and quotient join. All the atomic granules can be hierarchized by set-inclusion relation and all the granules can be hierarchized by coarse-fine relation. Viewing an information system from the micro and the macro perspectives, we can get a micro knowledge space and a micro knowledge space, from which a rough set model and a spatial rough granule model are respectively obtained. The classical rough set model is the special case of the rough set model induced from the micro knowledge space, while the spatial rough granule model will be play a pivotal role in the problem-solving of structures. We discuss twelve axioms of monotone increasing subsethood and twelve corresponding axioms of monotone decreasing supsethood, and generalize subsethood and supsethood to conditional granularity and conditional fineness respectively. We develop five conditional granularity measures and five conditional fineness measures and prove that each conditional granularity or fineness measure satisfies its corresponding twelve axioms although its subsethood or supsethood measure only hold one of the two boundary conditions. We further define five conditional granularity entropies and five conditional fineness entropies respectively, and each entropy only satisfies part of the boundary conditions but all the ten monotone conditions

    Client acceptance method for audit firms based on interval-valued fuzzy numbers

    Get PDF
    To ensure that investors are getting financial statements that conform to Generally Accepted Accounting Principles, the security exchange committee requires publicly traded companies to hire external auditors. Because the information provided in company financial statements has significant economic and social consequences for various parties, external auditors are needed to minimize litigation. Therefore, it is important for audit firms’ risk management teams to evaluate which clients to accept. In this paper, we propose a client acceptance method (CAM) that uses a technique for order preference using similarity to the ideal solution (i.e. TOPSIS) approach to evaluate potential new clients using a decision-making method with interval-valued fuzzy numbers (IVFNs). Through a case study, this paper shows that this CAM results in a high Spearman rankorder correlation coefficient (0.9 to 1.0) with human judgment. This result indicates that CAM could help decision makers evaluate potential clients before acceptance, especially when there are several potential clients but limited resources to provide services. The CAM also could help audit firms more easily ensure that decision makers are complying with firm policies concerning client acceptance through the establishment of uncertainty factor weights. First published online: 28 Jan 201

    Data Patterns Discovery Using Unsupervised Learning

    Get PDF
    Self-care activities classification poses significant challenges in identifying children’s unique functional abilities and needs within the exceptional children healthcare system. The accuracy of diagnosing a child\u27s self-care problem, such as toileting or dressing, is highly influenced by an occupational therapists’ experience and time constraints. Thus, there is a need for objective means to detect and predict in advance the self-care problems of children with physical and motor disabilities. We use clustering to discover interesting information from self-care problems, perform automatic classification of binary data, and discover outliers. The advantages are twofold: the advancement of knowledge on identifying self-care problems in children and comprehensive experimental results on clustering binary healthcare data. By using various distances and linkage methods, resampling techniques of imbalanced data, and feature selection preprocessing in a clustering framework, we find associations among patients and an Adjusted Rand Index (ARI) of 76.26\

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    Full Issue

    Get PDF
    • …
    corecore