1,178 research outputs found

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance

    Cascaded Converters For Integration And Management Of Grid Level Energy Storage Systems

    Get PDF
    ABSTRACT CASCADED CONVERTERS FOR INTEGRATION AND MANAGEMENT OF GRID-LEVEL ENERGY STORAGE SYSTEMS by ZUHAIR ALAAS December 2017 Advisor: Dr. Caisheng Wang Major: ELECTRICAL ENGINEERING Degree: Doctor of Philosophy This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing

    A GENERAL REVIEW AND PERFORMANCE EVALUATION OF MULTI-LEVEL CONVERTERS FOR EFFICIENT POWER GENERATION AND APPLICATIONS

    Get PDF
    This paper comparatively assessed the performance status of seven different multi-level converters with respect to their output voltages, output currents and corresponding percentage total harmonic distortion under the same RL-load condition. The spectral distributions of these various multi-level converters’ waveforms obtained under normal modulation index of 0.8 are presented in this work. The significance of this paper is basically centered on the need to have an improved multi-level converter that has a better flexibility in control, which can ensure continuity in operation and can as well generate a reduced percentage harmonic distortion value under a varied modulation index. This converter will also be able to generate three level or five level output voltages depending on the point of load connection. The analysis and results obtained from this work thus showed that a five-level voltage source inverter formed by a cascade between a three-level flying capacitor and H-bridge produced a given percentage reduction in the value of harmonic distortion under the same loading condition and therefore ensures optimum performance with regard to other power converters of the same rating. http://dx.doi.org/10.4314/njt.v35i1.2

    High-Performance Isolated Bidirectional DC-DC Converter

    Get PDF
    Conversores DC-DC bidireccionais têm vindo a ganhar atenção na área da eletrónica de potência devido ao aumento da necessidade de um fluxo de potência controlado entre dois barramentos DC. Aplicações típicas podem ser facilmente listadas, indo desde unidades de produção de energia renovável até veículos elétricos e híbridos. Estes conversores podem apresentar funcionalidades como elevada densidade energética e performance, assim como isolamento galvânico entre cada porto. Desta forma, a AddVolt requisitou que tal conversor fosse incluído na sua solução de travagem regenerativa. Com esta dissertação, um conversor DC-DC bidireccional e isolado é proposto, sendo que todos os aspetos desde revisão bibliográfica, modelação, design, simulação, implementação, teste e validação são abrangidos. Um conversor Dual-Active Bridge (DAB) de média potência e alta frequência é a topologia escolhida. Após validação de quer a topologia como a malha de controlo desenhada num ambiente computacional, um protótipo experimental é assemblado e testado com sucesso. O isolamento galvânico é garantido e atingido através de um transformador de alta frequência desenhado e enrolado pelo autor.Bidirectional DC-DC converters have been gaining attention in the field of power electronics due to the increasing need of a controlled power flow between two DC buses. Typical applications can be easily listed, ranging from renewable energy production units to electric and hybrid vehicles. Such converters can feature characteristics as high power density and performance as well as isolation between each port. As a result, AddVolt has commissioned that such a converter should be included in its regenerative breaking solution. Within this dissertation, a bidirectional isolated DC-DC converter is proposed, and all aspects from literature review, modelling, design, simulation, implementation, testing and validation are deeply covered. A medium-power high frequency Dual-Active Bridge (DAB) converter is the chosen topology. After validation of both the topology and control structure in a computational environment, an experimental prototype is assembled and successfully tested. Galvanic isolation is granted and achieved by a self-designed and in-house wound high frequency transformer

    Grid Integration of DC Buildings: Standards, Requirements and Power Converter Topologies

    Get PDF
    Residential dc microgrids and nanogrids are the emerging technology that is aimed to promote the transition to energy-efficient buildings and provide simple, highly flexible integration of renewables, storages, and loads. At the same time, the mass acceptance of dc buildings is slowed down by the relative immaturity of the dc technology, lack of standardization and general awareness about its potential. Additional efforts from multiple directions are necessary to promote this technology and increase its market attractiveness. In the near-term, it is highly likely that the dc buildings will be connected to the conventional ac distribution grid by a front-end ac-dc converter that provides all the necessary protection and desired functionality. At the same time, the corresponding requirements for this converter have not been yet consolidated. To address this, present paper focuses on various aspects of the integration of dc buildings and includes analysis of related standards, directives, operational and compatibility requirements as well as classification of voltage levels. In addition, power converter configurations and modulation methods are analyzed and compared. A classification of topologies that can provide the required functionality for the application is proposed. Finally, future trends and remaining challenges pointed out to motivate new contributions to this topic

    Transformerless High-Power Medium-Voltage Multi-Module PV Converters

    Get PDF
    This thesis is focused on the modular multilevel converter (MMC) for Photovoltaic (PV) applications. It is an attempt to address the issues associated with the modeling, control, and power mismatch elimination of the MMC-based PV systems. Firstly, a new real power reference generation scheme is proposed that creates a linear relationship between the real power reference of the system and the dc link voltage of the submodules. Further, a new power mismatch elimination strategy is proposed for the MMC-based PV system which ensures balanced currents are delivered to the host grid regardless of leg and arm power mismatches. The thesis also proposes a new configuration for embedding battery energy storage(BES) systems into the arms of the converter. Then, an enabling control scheme is proposed for the MMC-based PV-BES system which employs the embedded BES systems to eliminate power mismatches and smoothen the output power of the PV generators. To mitigate large power mismatches which are outside the power rating of the BES systems, the proposed strategy uses a combination of power exchange with BES systems and power transfer between the legs of the converter. Finally, a modified power mismatch elimination strategy is proposed to ensure balanced grid currents even if the grid voltage is unbalanced. To achieve this goal, unequal powers are delivered to the grid from the phases of the system according to the voltage magnitude of each phase

    Integrated power/signal transmission for smart energy systems

    Get PDF
    Communication technologies, especially wired technology, have developed considerably in terms of signal stability and communication speed. Conventional renewable energy generation units in traditional energy systems require additional communication devices to manage the renewable power generation equipment, which can raise the size and expenditure of the system. Additionally, although power line communication (PLC) can simplify system wiring by eliminating the requirement for communication cables, additional signal coupling devices are still needed to combine energy and signals. Therefore, it is significant to investigate a suitable transmission approach for energy and signals in smart energy systems (SESs). The purpose of this study is to analyse the feasibility of the integrated power/signal transmission (IPST) approach and to develop IPST-based converters for SESs. Firstly, state-of-the-art communication strategies including wireless and wired methods are reviewed and their advantages and restrictions are summarised in comparison. The review work demonstrates that it is essential to systematically analyse the possible signal modulation approaches for power converter implementations and extend IPST technology in AC power system applications. On this basis, this research then investigates the similarity between signal transmission and power conversion from a system architecture perspective and analyses the mechanisms of pulse width modulation (PWM) based signal modulation methods. Next, the integrated transmission approaches are verified through the buck converter, boost converter and cascaded H-bridge converter, and the simulation results demonstrate that the designed strategies have decent noise immunity. Finally, all the proposed IPST methods in different SESs are validated. In summary, the main achievements of this study are the analysis of the feasibility of various converters for IPST transmission and the extension of IPST technology to different SES applications

    Mitigation of Power Quality Problems Using Custom Power Devices: A Review

    Get PDF
    Electrical power quality (EPQ) in distribution systems is a critical issue for commercial, industrial and residential applications. The new concept of advanced power electronic based Custom Power Devices (CPDs) mainly distributed static synchronous compensator (D-STATCOM), dynamic voltage restorer (DVR) and unified power quality conditioner (UPQC) have been developed due to lacking the performance of traditional compensating devices to minimize power quality disturbances. This paper presents a comprehensive review on D-STATCOM, DVR and UPQC to solve the electrical power quality problems of the distribution networks. This is intended to present a broad overview of the various possible DSTATCOM, DVR and UPQC configurations for single-phase (two wire) and three-phase (three-wire and four-wire) networks and control strategies for the compensation of various power quality disturbances. Apart from this, comprehensive explanation, comparison, and discussion on D-STATCOM, DVR, and UPQC are presented. This paper is aimed to explore a broad prospective on the status of D-STATCOMs, DVRs, and UPQCs to researchers, engineers and the community dealing with the power quality enhancement. A classified list of some latest research publications on the topic is also appended for a quick reference

    Isolated and Bidirectional DC-DC Converter for Electric Vehicles

    Get PDF
    O estado da arte iniciou com a análise na literatura de topologias de conversores DC-DC. Técnicas de modulação são estudadas com vista a melhorar a eficiência de conversão, realçando as vantagens e limitações inerentes das mesmas. Após a análise da literatura, o foco projeto passou a ser a topologias de dupla ponte com dispositivos ativos e com isolamento galvânico intermédio entre as duas pontes (conhecido em inglês por dual active bridge). Algumas técnicas de modulação que permitem o funcionamento do conversor são analisadas no documento e suportadas com resultados obtidos em ambiente de simulação. O dimensionamento do transformador de potência é realizado assim como a descrição dos passos. É relizado uma análise de mercado de dispositivos de comutação com a tecnologia "Silicon Carbide" e são apresentados estimativas de perdas e eficiência de operação na utilização de transistores com a techonoloa SiC no conversor analisado. Os resultados são obtidos com recurso a simulações computacionais que através de modelos de aproximação permitem aproximar o conversor a uma situação mais proxima da real. Em termos de implementação, é esperado a implementação um circuito de comando para dois MOSFETS com tecnologia SiC com a configuração em meia ponte ligada a uma carga
    corecore