657 research outputs found

    Expert System for Sintering Process Control

    Get PDF

    Challenges and Prospects of Steelmaking Towards the Year 2050

    Get PDF
    The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem

    Process Modeling in Pyrometallurgical Engineering

    Get PDF
    The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions

    Full oxygen blast furnace steelmaking: From direct hydrogen injection to methanized BFG injection

    Get PDF
    This paper presents a novel concept of Power to Gas in an oxygen blast furnace, through blast furnace gas methanation and direct H2 injection. The PEM electrolyser produces H2, which reacts with the CO and CO2 from the blast furnace gas forming synthetic natural gas. The latter gas is injected into the blast furnace, closing a carbon loop and avoiding CO2 emissions. A parametric analysis is performed to vary the H2:CO2 ratio in the methanation reaction. Different ratios are simulated and compared, among of which the most representative are: (i) 2.5, where unreacted CO2 is directly recycled with the synthetic natural gas; (ii) 4, where stoichiometric conditions are found and the synthetic gas is composed mostly by CH4; and (iii) 8, where an excess of H2 is found in the synthetic gas; and (iv) an infinite ratio, where only H2 is injected in the blast furnace. In the latter, the methanation plant is not required, and no synthetic natural gas is produced. The results show that low H2:CO2 ratios perform poorly, involving high PEM sizes and high costs but only a 5% of CO2 avoidance (compared to conventional blast furnaces). A H2:CO2 ratio of 4 and full H2 injection results in higher reduction of CO2 emissions (33.8 % and 28.6%) with carbon abatement costs of 260 and 245 €/tCO2, respectively

    Future Research and Developments on Reuse and Recycling of Steelmaking By-Products

    Get PDF
    In the steel sector, sustainable management of by-products is a key challenge to preserve natural resources and achieve the zero waste goal. In this paper, the main trends of future research and development on reuse and recycling of by-products of the steel industry are presented in the form of a roadmap, which is the outcome of a dissemination project funded by the European Union based on the analysis of the most relevant and recent European projects concerning reuse and recycling of by-products from the steel production cycle. In particular, the developed roadmap highlights the most important topics of future research activities and challenges related to reuse and recycling of by-products from the existing or alternative steelmaking routes. A time horizon of 10 years has been considered, taking into account the European Commission targets to achieve carbon neutrality in a circular economy context. In addition, current technological trends derived from past and ongoing research projects are analysed. Research needs are based on the main categories of by-products and residual materials. Due to the different pathways to reduce CO2 emissions, each category is divided into subcategories considering both current and novel process routes targeting decarbonization of steel production. This work identifies the most urgent and demanding research directions for the coming years based on a survey targeting the steel companies, services providers of the steel industry and research organizations active in the field

    Advances in raw material industries for sustainable development goals

    Get PDF
    """Advances in Raw Material Industries for Sustainable Development Goals"" presents the results of joint scientific research conducted in the context of the Russian-German Raw Materials Forum. Today Russia and Germany are exploring various forms of cooperation in the field of mining, geology, mineralogy, mechanical engineering and energy. Russia and Germany are equally interested in expanding cooperation and modernizing the economy in terms of sustainable development. The main theme of this article collection is connected with existing business ventures and ideas from both Russia and Germany. In this book the authors regard complex processes in mining industry from various points of view, including: - modern technologies in prospecting, exploration and development of mineral resources - progressive methods of natural and industrial mineral raw materials processing - energy technologies and digital technologies for sustainable development - cutting-edge technologies and innovations in the oil and gas industry. Working with young researchers, supporting their individual professional development and creating conditions for their mobility and scientific cooperation are essential parts of Russian-German Raw Materials Forum founded in Dresden 13 years ago. This collection represents both willingness of young researchers to be involved in large-scale international projects like Russian-German Raw Material Forum and the results of their long and thorough work in the promising areas of cooperation between Russia and Germany.

    Environmental Sustainability of Current Waste Management Practices

    Get PDF
    Environmentally sustainable and economic waste management is of significant importance to various fields, including the healthcare, mining, industrial, metal-processing, municipal and commercial sectors. This book provides a global perspective and covers a wide range of state-of-the-art topics on waste management, recycling, material and energy recovery, industrial waste, etc. Information in the form of in-depth reviews and research articles will be a valuable resource for academics, professionals and regional as well as international organizations
    corecore