1,799 research outputs found

    Machine learning techniques for sensor-based household activity recognition and forecasting

    Get PDF
    Thanks to the recent development of cheap and unobtrusive smart-home sensors, ambient assisted living tools promise to offer innovative solutions to support the users in carrying out their everyday activities in a smoother and more sustainable way. To be effective, these solutions need to constantly monitor and forecast the activities of daily living carried out by the inhabitants. The Machine Learning field has seen significant advancements in the development of new techniques, especially regarding deep learning algorithms. Such techniques can be successfully applied to household activity signal data to benefit the user in several applications. This thesis therefore aims to produce a contribution that artificial intelligence can make in the field of activity recognition and energy consumption. The effective recognition of common actions or the use of high-consumption appliances would lead to user profiling, thus enabling the optimisation of energy consumption in favour of the user himself or the energy community in general. Avoiding wasting electricity and optimising its consumption is one of the main objectives of the community. This work is therefore intended as a forerunner for future studies that will allow, through the results in this thesis, the creation of increasingly intelligent systems capable of making the best use of the user's resources for everyday life actions. Namely, this thesis focuses on signals from sensors installed in a house: data from position sensors, door sensors, smartphones or smart meters, and investigates the use of advanced machine learning algorithms to recognize and forecast inhabitant activities, including the use of appliances and the power consumption. The thesis is structured into four main chapters, each of which represents a contribution regarding Machine Learning or Deep Learning techniques for addressing challenges related to the aforementioned data from different sources. The first contribution highlights the importance of exploiting dimensionality reduction techniques that can simplify a Machine Learning model and increase its efficiency by identifying and retaining only the most informative and predictive features for activity recognition. In more detail, it is presented an extensive experimental study involving several feature selection algorithms and multiple Human Activity Recognition benchmarks containing mobile sensor data. In the second contribution, we propose a machine learning approach to forecast future energy consumption considering not only past consumption data, but also context data such as inhabitants’ actions and activities, use of household appliances, interaction with furniture and doors, and environmental data. We performed an experimental evaluation with real-world data acquired in an instrumented environment from a large user group. Finally, the last two contributions address the Non-Intrusive-Load-Monitoring problem. In one case, the aim is to identify the operating state (on/off) and the precise energy consumption of individual electrical loads, considering only the aggregate consumption of these loads as input. We use a Deep Learning method to disaggregate the low-frequency energy signal generated directly by the new generation smart meters being deployed in Italy, without the need for additional specific hardware. In the other case, driven by the need to build intelligent non-intrusive algorithms for disaggregating electrical signals, the work aims to recognize which appliance is activated by analyzing energy measurements and classifying appliances through Machine Learning techniques. Namely, we present a new way of approaching the problem by unifying Single Label (single active appliance recognition) and Multi Label (multiple active appliance recognition) learning paradigms. This combined approach, supplemented with an event detector, which suggests the instants of activation, would allow the development of an end-to-end NILM approach

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    Machine Learning for Human Activity Detection in Smart Homes

    Get PDF
    Recognizing human activities in domestic environments from audio and active power consumption sensors is a challenging task since on the one hand, environmental sound signals are multi-source, heterogeneous, and varying in time and on the other hand, the active power consumption varies significantly for similar type electrical appliances. Many systems have been proposed to process environmental sound signals for event detection in ambient assisted living applications. Typically, these systems use feature extraction, selection, and classification. However, despite major advances, several important questions remain unanswered, especially in real-world settings. A part of this thesis contributes to the body of knowledge in the field by addressing the following problems for ambient sounds recorded in various real-world kitchen environments: 1) which features, and which classifiers are most suitable in the presence of background noise? 2) what is the effect of signal duration on recognition accuracy? 3) how do the SNR and the distance between the microphone and the audio source affect the recognition accuracy in an environment in which the system was not trained? We show that for systems that use traditional classifiers, it is beneficial to combine gammatone frequency cepstral coefficients and discrete wavelet transform coefficients and to use a gradient boosting classifier. For systems based on deep learning, we consider 1D and 2D CNN using mel-spectrogram energies and mel-spectrograms images, as inputs, respectively and show that the 2D CNN outperforms the 1D CNN. We obtained competitive classification results for two such systems and validated the performance of our algorithms on public datasets (Google Brain/TensorFlow Speech Recognition Challenge and the 2017 Detection and Classification of Acoustic Scenes and Events Challenge). Regarding the problem of the energy-based human activity recognition in a household environment, machine learning techniques to infer the state of household appliances from their energy consumption data are applied and rule-based scenarios that exploit these states to detect human activity are used. Since most activities within a house are related with the operation of an electrical appliance, this unimodal approach has a significant advantage using inexpensive smart plugs and smart meters for each appliance. This part of the thesis proposes the use of unobtrusive and easy-install tools (smart plugs) for data collection and a decision engine that combines energy signal classification using dominant classifiers (compared in advanced with grid search) and a probabilistic measure for appliance usage. It helps preserving the privacy of the resident, since all the activities are stored in a local database. DNNs received great research interest in the field of computer vision. In this thesis we adapted different architectures for the problem of human activity recognition. We analyze the quality of the extracted features, and more specifically how model architectures and parameters affect the ability of the automatically extracted features from DNNs to separate activity classes in the final feature space. Additionally, the architectures that we applied for our main problem were also applied to text classification in which we consider the input text as an image and apply 2D CNNs to learn the local and global semantics of the sentences from the variations of the visual patterns of words. This work helps as a first step of creating a dialogue agent that would not require any natural language preprocessing. Finally, since in many domestic environments human speech is present with other environmental sounds, we developed a Convolutional Recurrent Neural Network, to separate the sound sources and applied novel post-processing filters, in order to have an end-to-end noise robust system. Our algorithm ranked first in the Apollo-11 Fearless Steps Challenge.Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 676157, project ACROSSIN

    Ensemble Feature Learning-Based Event Classification for Cyber-Physical Security of the Smart Grid

    Get PDF
    The power grids are transforming into the cyber-physical smart grid with increasing two-way communications and abundant data flows. Despite the efficiency and reliability promised by this transformation, the growing threats and incidences of cyber attacks targeting the physical power systems have exposed severe vulnerabilities. To tackle such vulnerabilities, intrusion detection systems (IDS) are proposed to monitor threats for the cyber-physical security of electrical power and energy systems in the smart grid with increasing machine-to-machine communication. However, the multi-sourced, correlated, and often noise-contained data, which record various concurring cyber and physical events, are posing significant challenges to the accurate distinction by IDS among events of inadvertent and malignant natures. Hence, in this research, an ensemble learning-based feature learning and classification for cyber-physical smart grid are designed and implemented. The contribution of this research are (i) the design, implementation and evaluation of an ensemble learning-based attack classifier using extreme gradient boosting (XGBoost) to effectively detect and identify attack threats from the heterogeneous cyber-physical information in the smart grid; (ii) the design, implementation and evaluation of stacked denoising autoencoder (SDAE) to extract highlyrepresentative feature space that allow reconstruction of a noise-free input from noise-corrupted perturbations; (iii) the design, implementation and evaluation of a novel ensemble learning-based feature extractors that combine multiple autoencoder (AE) feature extractors and random forest base classifiers, so as to enable accurate reconstruction of each feature and reliable classification against malicious events. The simulation results validate the usefulness of ensemble learning approach in detecting malicious events in the cyber-physical smart grid

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Improving detection of false data injection attacks using machine learning with feature selection and oversampling

    Get PDF
    Critical infrastructures have recently been integrated with digital controls to support intelligent decision making. Although this integration provides various benefits and improvements, it also exposes the system to new cyberattacks. In particular, the injection of false data and commands into communication is one of the most common and fatal cyberattacks in critical infrastructures. Hence, in this paper, we investigate the effectiveness of machine-learning algorithms in detecting False Data Injection Attacks (FDIAs). In particular, we focus on two of the most widely used critical infrastructures, namely power systems and water treatment plants. This study focuses on tackling two key technical issues: (1) finding the set of best features under a different combination of techniques and (2) resolving the class imbalance problem using oversampling methods. We evaluate the performance of each algorithm in terms of time complexity and detection accuracy to meet the time-critical requirements of critical infrastructures. Moreover, we address the inherent skewed distribution problem and the data imbalance problem commonly found in many critical infrastructure datasets. Our results show that the considered minority oversampling techniques can improve the Area Under Curve (AUC) of GradientBoosting, AdaBoost, and kNN by 10–12%

    A Comparative Study of Ensemble Classifiers for Paddy Blast Disease Prediction Model

    Get PDF
    Paddy blast has become most epidemic disease in many rice growing countries. Various statistical methods have been used for the prediction of paddy blast but previously used methods failed in predicting diseases with good accuracy. However the need to develop new model that considers both weather factors and non weather  data called blast disease data that influences paddy disease to grow. Given this point we developed ensemble classifier based paddy disease prediction model taking weather data from January 2013 to December 2019 from Agricultural and Horticulture Research Station Kathalgere Davangere District. For the predictive model we collected 7 kinds of weather data and 7 kinds of disease related data that includes Minimum Temperature, Maximum Temperature, Temperautre Difference,Relative Humidity, Stages of Paddy Cultivation, Varities of seeds, Season of cropping and so on. It is observed and analyzed that Minimum Temperature, Humidity and Rainfall has huge correlation with occurrence of disease. Since some of the variables are non numeric to convert them to numeric data one hot encoding approach is followed and to improve efficiency of ensemble classifiers  4 different filter based features selection methods are used such as Pearson’s correlation, Mutual information, ANNOVA F Value, Chi Square. Three different ensemble classifiers are used as predictive models and classifiers are compared it is observed that Bagging ensemble technique has achieved  accuracy of 98% compared to Adaboost of 97% and Voting classifier of 88%. Other classification metrics are used evaluate different classifiers like precision, recall, F1 Score, ROC and precision recall score. Our proposed ensemble classifers for paddy blast disease prediction has achieved high precision and high recall but when the solutions of model are closely looked bagging classifier is better compared to other ensemble classifers that are proposed in predicting paddy blast disease

    A Comparative Study of Ensemble Classifiers for Paddy Blast Disease Prediction Model

    Get PDF
    Paddy blast has become most epidemic disease in many rice growing countries. Various statistical methods have been used for the prediction of paddy blast but previously used methods failed in predicting diseases with good accuracy. However the need to develop new model that considers both weather factors and non weather  data called blast disease data that influences paddy disease to grow. Given this point we developed ensemble classifer based paddy disease prediction model taking weather data from January 2013 to December 2019 from Agricultural and Horticulture Research Station Kathalgere Davangere District. For the predictive model we collected 7 kinds of weather data and 7 kinds of disease related data that includes Minimum Temperature, Maximum Temperature, Temperautre Difference,Relative Humidity, Stages of Paddy Cultivation, Varities of seeds, Season of cropping and so on. It is observed and analyzed that Minimum Temperature, Humidity and Rainfall has huge correlation with occurrence of disease. Since some of the variables are non numeric to convert them to numeric data one hot encoding approach is followed and to improve efficiency of ensemble classifiers  4 different filter based features selection methods are used such as Pearson’s correlation, Mutual information, ANNOVA F Value, Chi Square. Three different ensemble classifiers are used as predictive models and classifiers are compared it is observed that Bagging ensemble technique has achieved  accuracy of 98% compared to Adaboost of 97% and Voting classifier of 88%. Other classification metrics are used evaluate different classifiers like precision, recall, F1 Score, ROC and precision recall score. Our proposed ensemble classifers for paddy blast disease prediction has achieved high precision and high recall but when the solutions of model are closely looked bagging classifier is better compared to other ensemble classifers that are proposed in predicting paddy blast disease

    A distributed and energy‑efficient KNN for EEG classification with dynamic money‑saving policy in heterogeneous clusters

    Get PDF
    Universidad de Granada/CBUASpanish Ministry of Science, Innovation, and Universities under Grants PGC2018-098813-B-C31,PID2022-137461NB-C32ERDF fund. Funding for open access charge: University of Granada/ CBU
    • …
    corecore