593 research outputs found

    Hybrid Template Update System for Unimodal Biometric Systems

    Full text link
    Semi-supervised template update systems allow to automatically take into account the intra-class variability of the biometric data over time. Such systems can be inefficient by including too many impostor's samples or skipping too many genuine's samples. In the first case, the biometric reference drifts from the real biometric data and attracts more often impostors. In the second case, the biometric reference does not evolve quickly enough and also progressively drifts from the real biometric data. We propose a hybrid system using several biometric sub-references in order to increase per- formance of self-update systems by reducing the previously cited errors. The proposition is validated for a keystroke- dynamics authentication system (this modality suffers of high variability over time) on two consequent datasets from the state of the art.Comment: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2012), Washington, District of Columbia, USA : France (2012

    Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric

    Full text link
    Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques

    Keystroke dynamics in the pre-touchscreen era

    Get PDF
    Biometric authentication seeks to measure an individual’s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals’ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts

    Fast computation of the performance evaluation of biometric systems: application to multibiometric

    Full text link
    The performance evaluation of biometric systems is a crucial step when designing and evaluating such systems. The evaluation process uses the Equal Error Rate (EER) metric proposed by the International Organization for Standardization (ISO/IEC). The EER metric is a powerful metric which allows easily comparing and evaluating biometric systems. However, the computation time of the EER is, most of the time, very intensive. In this paper, we propose a fast method which computes an approximated value of the EER. We illustrate the benefit of the proposed method on two applications: the computing of non parametric confidence intervals and the use of genetic algorithms to compute the parameters of fusion functions. Experimental results show the superiority of the proposed EER approximation method in term of computing time, and the interest of its use to reduce the learning of parameters with genetic algorithms. The proposed method opens new perspectives for the development of secure multibiometrics systems by speeding up their computation time.Comment: Future Generation Computer Systems (2012

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner

    Using Keystroke Dynamics and Location Verification Method for Mobile Banking Authentication.

    Get PDF
    With the rise of security attacks on mobile phones, traditional methods to authentication such as Personal Identification Numbers (PIN) and Passwords are becoming ineffective due to their limitations such as being easily forgettable, discloser, lost or stolen. Keystroke dynamics is a form of behavioral biometric based authentication where an analysis of how users type is monitored and used in authenticating users into a system. The use of location data provides a verification mechanism based on user’s location which can be obtained via their phones Global Positioning System (GPS) facility. This study evaluated existing authentication methods and their performance summarized. To address the limitations of traditional authentication methods this paper proposed an alternative authentication method that uses Keystroke dynamics and location data. To evaluate the proposed authentication method experiments were done through use of a prototype android mobile banking application that captured the typing behavior while logging in and location data from 60 users. The experiment results were lower compared to the previous studies provided in this paper with a False Rejection Rate (FRR) of 5.33% which is the percentage of access attempts by legitimate users that have been rejected by the system and a False Acceptance Rate (FAR) of 3.33% which is the percentage of access attempts by imposters that have been accepted by the system incorrectly, giving an Equal Error Rate (EER) of 4.3%.The outcome of this study demonstrated keystroke dynamics and location verification on PINs as an alternative authentication of mobile banking transactions building on current smartphones features with less implementation costs with no additional hardware compared to other biometric methods. Keywords: smartphones, biometric, mobile banking, keystroke dynamics, location verification, securit

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Continuous user authentication featuring keystroke dynamics based on robust recurrent confidence model and ensemble learning approach

    Get PDF
    User authentication is considered to be an important aspect of any cybersecurity program. However, one-time validation of user’s identity is not strong to provide resilient security throughout the user session. In this aspect, continuous monitoring of session is necessary to ensure that only legitimate user is accessing the system resources for entire session. In this paper, a true continuous user authentication system featuring keystroke dynamics behavioural biometric modality has been proposed and implemented. A novel method of authenticating the user on each action has been presented which decides the legitimacy of current user based on the confidence in the genuineness of each action. The 2-phase methodology, consisting of ensemble learning and robust recurrent confidence model(R-RCM), has been designed which employs a novel perception of two thresholds i.e., alert and final threshold. Proposed methodology classifies each action based on the probability score of ensemble classifier which is afterwards used along with hyperparameters of R-RCM to compute the current confidence in the genuineness of user. System decides if user can continue using the system or not based on new confidence value and final threshold. However, it tends to lock out imposter user more quickly if it reaches the alert threshold. Moreover, system has been validated with two different experimental settings and results are reported in terms of mean average number of genuine actions (ANGA) and average number of imposter actions(ANIA), whereby achieving the lowest mean ANIA with experimental setting II

    Continuous user authentication featuring keystroke dynamics based on robust recurrent confidence model and ensemble learning approach

    Get PDF
    User authentication is considered to be an important aspect of any cybersecurity program. However, one-time validation of user’s identity is not strong to provide resilient security throughout the user session. In this aspect, continuous monitoring of session is necessary to ensure that only legitimate user is accessing the system resources for entire session. In this paper, a true continuous user authentication system featuring keystroke dynamics behavioural biometric modality has been proposed and implemented. A novel method of authenticating the user on each action has been presented which decides the legitimacy of current user based on the confidence in the genuineness of each action. The 2-phase methodology, consisting of ensemble learning and robust recurrent confidence model(R-RCM), has been designed which employs a novel perception of two thresholds i.e., alert and final threshold. Proposed methodology classifies each action based on the probability score of ensemble classifier which is afterwards used along with hyperparameters of R-RCM to compute the current confidence in the genuineness of user. System decides if user can continue using the system or not based on new confidence value and final threshold. However, it tends to lock out imposter user more quickly if it reaches the alert threshold. Moreover, system has been validated with two different experimental settings and results are reported in terms of mean average number of genuine actions (ANGA) and average number of imposter actions(ANIA), whereby achieving the lowest mean ANIA with experimental setting II
    corecore