741 research outputs found

    Optimization of Beyond 5G Network Slicing for Smart City Applications

    Get PDF
    Transitioning from the current fifth-generation (5G) wireless technology, the advent of beyond 5G (B5G) signifies a pivotal stride toward sixth generation (6G) communication technology. B5G, at its essence, harnesses end-to-end (E2E) network slicing (NS) technology, enabling the simultaneous accommodation of multiple logical networks with distinct performance requirements on a shared physical infrastructure. At the forefront of this implementation lies the critical process of network slice design, a phase central to the realization of efficient smart city networks. This thesis assumes a key role in the network slicing life cycle, emphasizing the analysis and formulation of optimal procedures for configuring, customizing, and allocating E2E network slices. The focus extends to catering to the unique demands of smart city applications, encompassing critical areas such as emergency response, smart buildings, and video surveillance. By addressing the intricacies of network slice design, the study navigates through the complexities of tailoring slices to meet specific application needs, thereby contributing to the seamless integration of diverse services within the smart city framework. Addressing the core challenge of NS, which involves the allocation of virtual networks on the physical topology with optimal resource allocation, the thesis introduces a dual integer linear programming (ILP) optimization problem. This problem is formulated to jointly minimize the embedding cost and latency. However, given the NP-hard nature of this ILP, finding an efficient alternative becomes a significant hurdle. In response, this thesis introduces a novel heuristic approach the matroid-based modified greedy breadth-first search (MGBFS) algorithm. This pioneering algorithm leverages matroid properties to navigate the process of virtual network embedding and resource allocation. By introducing this novel heuristic approach, the research aims to provide near-optimal solutions, overcoming the computational complexities associated with the dual integer linear programming problem. The proposed MGBFS algorithm not only addresses the connectivity, cost, and latency constraints but also outperforms the benchmark model delivering solutions remarkably close to optimal. This innovative approach represents a substantial advancement in the optimization of smart city applications, promising heightened connectivity, efficiency, and resource utilization within the evolving landscape of B5G-enabled communication technology

    Vibration-based damage localisation: Impulse response identification and model updating methods

    Get PDF
    Structural health monitoring has gained more and more interest over the recent decades. As the technology has matured and monitoring systems are employed commercially, the development of more powerful and precise methods is the logical next step in this field. Especially vibration sensor networks with few measurement points combined with utilisation of ambient vibration sources are attractive for practical applications, as this approach promises to be cost-effective while requiring minimal modification to the monitored structures. Since efficient methods for damage detection have already been developed for such sensor networks, the research focus shifts towards extracting more information from the measurement data, in particular to the localisation and quantification of damage. Two main concepts have produced promising results for damage localisation. The first approach involves a mechanical model of the structure, which is used in a model updating scheme to find the damaged areas of the structure. Second, there is a purely data-driven approach, which relies on residuals of vibration estimations to find regions where damage is probable. While much research has been conducted following these two concepts, different approaches are rarely directly compared using the same data sets. Therefore, this thesis presents advanced methods for vibration-based damage localisation using model updating as well as a data-driven method and provides a direct comparison using the same vibration measurement data. The model updating approach presented in this thesis relies on multiobjective optimisation. Hence, the applied numerical optimisation algorithms are presented first. On this basis, the model updating parameterisation and objective function formulation is developed. The data-driven approach employs residuals from vibration estimations obtained using multiple-input finite impulse response filters. Both approaches are then verified using a simulated cantilever beam considering multiple damage scenarios. Finally, experimentally obtained data from an outdoor girder mast structure is used to validate the approaches. In summary, this thesis provides an assessment of model updating and residual-based damage localisation by means of verification and validation cases. It is found that the residual-based method exhibits numerical performance sufficient for real-time applications while providing a high sensitivity towards damage. However, the localisation accuracy is found to be superior using the model updating method

    Runway Safety Improvements Through a Data Driven Approach for Risk Flight Prediction and Simulation

    Get PDF
    Runway overrun is one of the most frequently occurring flight accident types threatening the safety of aviation. Sensors have been improved with recent technological advancements and allow data collection during flights. The recorded data helps to better identify the characteristics of runway overruns. The improved technological capabilities and the growing air traffic led to increased momentum for reducing flight risk using artificial intelligence. Discussions on incorporating artificial intelligence to enhance flight safety are timely and critical. Using artificial intelligence, we may be able to develop the tools we need to better identify runway overrun risk and increase awareness of runway overruns. This work seeks to increase attitude, skill, and knowledge (ASK) of runway overrun risks by predicting the flight states near touchdown and simulating the flight exposed to runway overrun precursors. To achieve this, the methodology develops a prediction model and a simulation model. During the flight training process, the prediction model is used in flight to identify potential risks and the simulation model is used post-flight to review the flight behavior. The prediction model identifies potential risks by predicting flight parameters that best characterize the landing performance during the final approach phase. The predicted flight parameters are used to alert the pilots for any runway overrun precursors that may pose a threat. The predictions and alerts are made when thresholds of various flight parameters are exceeded. The flight simulation model simulates the final approach trajectory with an emphasis on capturing the effect wind has on the aircraft. The focus is on the wind since the wind is a relatively significant factor during the final approach; typically, the aircraft is stabilized during the final approach. The flight simulation is used to quickly assess the differences between fight patterns that have triggered overrun precursors and normal flights with no abnormalities. The differences are crucial in learning how to mitigate adverse flight conditions. Both of the models are created with neural network models. The main challenges of developing a neural network model are the unique assignment of each model design space and the size of a model design space. A model design space is unique to each problem and cannot accommodate multiple problems. A model design space can also be significantly large depending on the depth of the model. Therefore, a hyperparameter optimization algorithm is investigated and used to design the data and model structures to best characterize the aircraft behavior during the final approach. A series of experiments are performed to observe how the model accuracy change with different data pre-processing methods for the prediction model and different neural network models for the simulation model. The data pre-processing methods include indexing the data by different frequencies, by different window sizes, and data clustering. The neural network models include simple Recurrent Neural Networks, Gated Recurrent Units, Long Short Term Memory, and Neural Network Autoregressive with Exogenous Input. Another series of experiments are performed to evaluate the robustness of these models to adverse wind and flare. This is because different wind conditions and flares represent controls that the models need to map to the predicted flight states. The most robust models are then used to identify significant features for the prediction model and the feasible control space for the simulation model. The outcomes of the most robust models are also mapped to the required landing distance metric so that the results of the prediction and simulation are easily read. Then, the methodology is demonstrated with a sample flight exposed to an overrun precursor, and high approach speed, to show how the models can potentially increase attitude, skill, and knowledge of runway overrun risk. The main contribution of this work is on evaluating the accuracy and robustness of prediction and simulation models trained using Flight Operational Quality Assurance (FOQA) data. Unlike many studies that focused on optimizing the model structures to create the two models, this work optimized both data and model structures to ensure that the data well capture the dynamics of the aircraft it represents. To achieve this, this work introduced a hybrid genetic algorithm that combines the benefits of conventional and quantum-inspired genetic algorithms to quickly converge to an optimal configuration while exploring the design space. With the optimized model, this work identified the data features, from the final approach, with a higher contribution to predicting airspeed, vertical speed, and pitch angle near touchdown. The top contributing features are altitude, angle of attack, core rpm, and air speeds. For both the prediction and the simulation models, this study goes through the impact of various data preprocessing methods on the accuracy of the two models. The results may help future studies identify the right data preprocessing methods for their work. Another contribution from this work is on evaluating how flight control and wind affect both the prediction and the simulation models. This is achieved by mapping the model accuracy at various levels of control surface deflection, wind speeds, and wind direction change. The results saw fairly consistent prediction and simulation accuracy at different levels of control surface deflection and wind conditions. This showed that the neural network-based models are effective in creating robust prediction and simulation models of aircraft during the final approach. The results also showed that data frequency has a significant impact on the prediction and simulation accuracy so it is important to have sufficient data to train the models in the condition that the models will be used. The final contribution of this work is on demonstrating how the prediction and the simulation models can be used to increase awareness of runway overrun.Ph.D

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Application of nature-inspired optimization algorithms to improve the production efficiency of small and medium-sized bakeries

    Get PDF
    Increasing production efficiency through schedule optimization is one of the most influential topics in operations research that contributes to decision-making process. It is the concept of allocating tasks among available resources within the constraints of any manufacturing facility in order to minimize costs. It is carried out by a model that resembles real-world task distribution with variables and relevant constraints in order to complete a planned production. In addition to a model, an optimizer is required to assist in evaluating and improving the task allocation procedure in order to maximize overall production efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments combine to form a solution framework for production planning and support decision-making in various manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most of their production schedules are based on personal experience. This makes a significant difference in production costs when compared to the large bakeries, as evidenced by their market dominance. In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule based on actual data, featuring the constraints of the production environment in small and medium-sized bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were implemented to find efficient production schedules. While makespan is the most widely used quality criterion of production efficiency because it dominates production costs, high oven idle time in bakeries also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan and oven idle time were included in the objectives of optimization. To find the optimal production planning for an existing production line, particle swarm optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting factor method was used to combine two objectives into a single objective. The classical optimization algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. Nonetheless, the algorithms convergence was found to be poor, with a lower probability of obtaining the best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in this study demonstrated significant improvement in convergence with a higher probability of obtaining better results. To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan and a 26 % reduction in oven idle time based on data from different production days. The performance comparison revealed a significant difference between these multi-objective optimization algorithms, with NSGA-II performing best and OMOPSO and SMPSO performing worst. Proofing is a key processing stage that contributes to the quality of the final product by developing flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the shortest makespan can be significantly inefficient. The computational results show that the schedules with the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to proofing time deviation from expected duration. In this thesis, a method for developing resilient production planning that takes into account uncertain proofing time is proposed, so that even if the deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results with a production dataset revealed a proactive production plan, with only 5 minutes longer than the shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % to +10 % of actual proofing time. This study proposed a common framework for small and medium-sized bakeries to improve their production efficiency in three steps: collecting production data, simulating production planning with the hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization problem. Based on real bakery production data, the results revealed that existing plans were significantly inefficient and could be optimized in a reasonable computational time using a robust optimization algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations could help to achieve an efficient and resilient production system.Die Steigerung der Produktionseffizienz durch die Optimierung von Arbeitsplänen ist eines der am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung beiträgt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfügbaren Ressourcen innerhalb der Beschränkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung von Arbeitsplänen wird mit Hilfe eines Modells durchgeführt, das die Aufgabenverteilung in der realen Welt mit Variablen und relevanten Einschränkungen nachbildet, um die Produktion zu simulieren. Zusätzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das gesamte Verfahren wird in der Regel auf einem Computer durchgeführt, wobei diese beiden unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen Lösungsrahmen für die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen Fertigungsindustrien unterstützen. Kleine und mittelgroße Bäckereien haben zumeist keinen Zugang zu den modernsten Werkzeugen und die meisten ihrer Produktionspläne beruhen auf persönlichen Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den großen Bäckereien aus, was sich in deren Marktdominanz widerspiegelt. In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen Produktionsplan auf der Grundlage tatsächlicher Daten zu erstellen, der die Beschränkungen der Produktionsumgebung in kleinen und mittleren Bäckereien berücksichtigt. Mehrere einzel- und mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um effiziente Produktionspläne zu berechnen. Die Minimierung der Produktionsdauer ist das am häufigsten verwendete Qualitätskriterium für die Produktionseffizienz, da sie die Produktionskosten dominiert. Jedoch wird in Bäckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die Produktionskosten erhöht. Die Kombination beider Qualitätskriterien (minimale Produktionskosten, minimale Leerlaufzeiten der Öfen) ermöglicht eine zusätzliche Kostenreduzierung durch Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele einbezogen. Um optimale Produktionspläne für bestehende Produktionsprozesse von Bäckereien zu ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in angemessener Zeit optimale Pläne zu berechnen, wobei bei einem untersuchten Datensatz die Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu den anderen Algorithmen. Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II am besten und OMOPSO und SMPSO am schlechtesten abschnitten. Die Gärung ist ein wichtiger Verarbeitungsschritt, der zur Qualität des Endprodukts beiträgt, indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der Gärung ist jedoch aufgrund der komplexen Interaktion von mehreren Größen abhängig wie der Hefezustand, der Temperatur in der Gärkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der Variabilität der Gärzeit kann jedoch ein Produktionsplan, der auf die kürzeste Produktionszeit optimiert ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die Pläne mit der kürzesten und nahezu kürzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der Abweichung der Gärzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur Entwicklung einer robusten Produktionsplanung vorgeschlagen, die Veränderungen in den Gärzeiten berücksichtigt, so dass selbst bei einer extremen Abweichung der Gärzeit die Schwankung der Produktionsdauer minimal ist. Die experimentellen Ergebnisse für einen Produktionsprozess ergaben einen robusten Produktionsplan, der nur 5 Minuten länger ist als die kürzeste Produktionsdauer, aber nur 21 Minuten in der Produktionsdauer schwankt, wenn die Gärzeit von -10 % bis +10 % der ermittelten Gärzeit variiert. In dieser Studie wird ein Vorgehen für kleine und mittlere Bäckereien vorgeschlagen, um ihre Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von Produktionsplänen mit dem hybrid No-Wait Flow Shop Modell und Ausführung der Optimierung. Für die Einzieloptimierung wird der mPSO-Algorithmus und für die Mehrzieloptimierung NSGA-II-Algorithmus empfohlen. Auf der Grundlage realer Bäckereiproduktionsdaten zeigten die Ergebnisse, dass die in den Bäckereien verwendeten Pläne ineffizient waren und mit Hilfe eines effizienten Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung eines solchen Vorgehens in kleinen und mittelgroßen Bäckereibetrieben trägt dazu bei effiziente und robuste Produktionspläne zu erstellen und somit die Wettbewerbsfähigkeit dieser Bäckereien zu erhöhen

    The Biometric Evolution of Sound and Space

    Get PDF
    Auditoria in the late 20th and 21st centuries have evolved into a series of spatial conventions that are an established and accepted norm. The relationship between space and music now exists in a decoupled condition, and music is no longer reliant on volumetric and material conditions to define its form (Glantz 2000). This thesis looks at a series of novel approaches to investigate how the links between music and space can be reconnected though evolutionary computation, parametric modelling, virtual acoustics and biometric sensing. The thesis describes in detail the experiments undertaken in developing methodologies in linking music, space and the body. The thesis will show how it is possible to develop new form finding and musical generation tools that allow new room shapes and acoustic measures to inform how new acoustic and musical forms can be developed unconsciously and objectively by a listener, in response to sound and site

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches
    • …
    corecore