106 research outputs found

    METADOCK: A parallel metaheuristic schema for virtual screening methods

    Get PDF
    Virtual screening through molecular docking can be translated into an optimization problem, which can be tackled with metaheuristic methods. The interaction between two chemical compounds (typically a protein, enzyme or receptor, and a small molecule, or ligand) is calculated by using highly computationally demanding scoring functions that are computed at several binding spots located throughout the protein surface. This paper introduces METADOCK, a novel molecular docking methodology based on parameterized and parallel metaheuristics and designed to leverage heterogeneous computers based on heterogeneous architectures. The application decides the optimization technique at running time by setting a configuration schema. Our proposed solution finds a good workload balance via dynamic assignment of jobs to heterogeneous resources which perform independent metaheuristic executions when computing different molecular interactions required by the scoring functions in use. A cooperative scheduling of jobs optimizes the quality of the solution and the overall performance of the simulation, so opening a new path for further developments of virtual screening methods on high-performance contemporary heterogeneous platforms.Ingeniería, Industria y Construcció

    Parallel evolutionary algorithms for scheduling on heterogeneous computing and grid environments

    Get PDF
    This thesis studies the application of sequential and parallel evolutionary algorithms to the scheduling problem in heterogeneous computing and grid environments, a key problem when executing tasks in distributed computing systems. Since the 1990's, this class of systems has been increasingly employed to provide support for solving complex problems using high-performance computing techniques. The scheduling problem in heterogeneous computing systems is an NP-hard optimization problem, which has been tackled using several optimization methods in the past. Among many new techniques for optimization, evolutionary computing methods have been successfully applied to this class of problems. In this work, several evolutionary algorithms in their sequential and parallel variants are specically designed to provide accurate solutions for the problem, allowing to compute an eficient planning for heterogeneous computing and grid environments. New problem instances, far more complex than those existing in the related literature, are introduced in this thesis in order to study the scalability of the presented parallel evolutionary algorithms. In addition, a new parallel micro-CHC algorithm is developed, inspired by useful ideas from the multiobjective optimization field. Eficient numerical results of this algorithm are reported in the experimental analysis performed on both well-known problem instances and the large instances specially designed in this work. The comparative study including traditional methods and evolutionary algorithms shows that the new parallel micro-CHC is able to achieve a high problem solving eficacy, outperforming previous results already reported for the problem and also having a good scalability behavior when solving high dimension problem instances.In addition, two variants of the scheduling problem in heterogeneous environments are also tackled, showing the versatility of the proposed approach using parallel evolutionary algorithms to deal with both dynamic and multi-objective scenarios.Esta tesis estudia la aplicación de algoritmos evolutivos secuenciales y paralelos para el problema de planicación de tareas en entornos de cómputo heterogéneos y de computación grid. Desde la década de 1990, estos sistemas computacionales han sido utilizados con éxito para resolver problemas complejos utilizando técnicas de computación de alto desempeo. El problema de planificación de tareas en entornos heterogéneos es un problema de optimización NP-difícil que ha sido abordado utilizando diversas técnicas. Entre las técnicas emergentes para optimización combinatoria, los algoritmos evolutivos han sido aplicados con éxito a esta clase de problemas. En este trabajo, varios algoritmos evolutivos en sus versiones secuenciales y paralelas han sido especificamente diseados para alcanzar soluciones precisas para el problema de planicación de tareas en entornos de heterogéneos, permitiendo calcular planificaciones eficientes para entornos que modelan clusters de computadores y plataformas de computación grid. Nuevas instancias del problema, con una complejidad mucho mayor que las previamente existentes en la literatura relacionada, son presentadas en esta tesis con el objetivo de analizar la escalabilidad de los algoritmos evolutivos propuestos. Complementariamente, un nuevo método, el micro-CHC paralelo es desarrollado, inspirado en ideas ítiles provenientes del área de optimización multiobjetivo. Resultados numéricos precisos y eficientes se reportan en el análisis experimental realizado sobre instancias estándar del problema y sobre las nuevas instancias especificamente diseñadas en este trabajo.El estudio comparativo que incluye a métodos tradicionales para planificación de tareas, los nuevos métodos propuestos y algoritmos evolutivos previamente aplicados al problema, demuestra que el nuevo micro-CHC paralelo es capaz de alcanzar altos valores de eficacia, superando a los mejores resultados previamente reportados en la literatura del área y mostrando un buen comportamiento de escalabilidad para resolver las instancias de gran dimensión. Además, dos variantes del problema de planificación de tareas en entornos heterogéneos han sido inicialmente estudiadas, comprobándose la versatilidad del enfoque propuesto para resolver las variantes dinámica y multiobjetivo del problema

    Automatic synthesis and optimization of chip multiprocessors

    Get PDF
    The microprocessor technology has experienced an enormous growth during the last decades. Rapid downscale of the CMOS technology has led to higher operating frequencies and performance densities, facing the fundamental issue of power dissipation. Chip Multiprocessors (CMPs) have become the latest paradigm to improve the power-performance efficiency of computing systems by exploiting the parallelism inherent in applications. Industrial and prototype implementations have already demonstrated the benefits achieved by CMPs with hundreds of cores.CMP architects are challenged to take many complex design decisions. Only a few of them are:- What should be the ratio between the core and cache areas on a chip?- Which core architectures to select?- How many cache levels should the memory subsystem have?- Which interconnect topologies provide efficient on-chip communication?These and many other aspects create a complex multidimensional space for architectural exploration. Design Automation tools become essential to make the architectural exploration feasible under the hard time-to-market constraints. The exploration methods have to be efficient and scalable to handle future generation on-chip architectures with hundreds or thousands of cores.Furthermore, once a CMP has been fabricated, the need for efficient deployment of the many-core processor arises. Intelligent techniques for task mapping and scheduling onto CMPs are necessary to guarantee the full usage of the benefits brought by the many-core technology. These techniques have to consider the peculiarities of the modern architectures, such as availability of enhanced power saving techniques and presence of complex memory hierarchies.This thesis has several objectives. The first objective is to elaborate the methods for efficient analytical modeling and architectural design space exploration of CMPs. The efficiency is achieved by using analytical models instead of simulation, and replacing the exhaustive exploration with an intelligent search strategy. Additionally, these methods incorporate high-level models for physical planning. The related contributions are described in Chapters 3, 4 and 5 of the document.The second objective of this work is to propose a scalable task mapping algorithm onto general-purpose CMPs with power management techniques, for efficient deployment of many-core systems. This contribution is explained in Chapter 6 of this document.Finally, the third objective of this thesis is to address the issues of the on-chip interconnect design and exploration, by developing a model for simultaneous topology customization and deadlock-free routing in Networks-on-Chip. The developed methodology can be applied to various classes of the on-chip systems, ranging from general-purpose chip multiprocessors to application-specific solutions. Chapter 7 describes the proposed model.The presented methods have been thoroughly tested experimentally and the results are described in this dissertation. At the end of the document several possible directions for the future research are proposed

    Green Parallel Metaheuristics: Design, Implementation, and Evaluation

    Get PDF
    Fecha de lectura de Tesis Doctoral 14 mayo 2020Green parallel metaheuristics (GPM) is a new concept we want to introduce in this thesis. It is an idea inspired by two facts: (i) parallel metaheuristics could help as unique tools to solve optimization problems in energy savings applications and sustainability, and (ii) these algorithms themselves run on multiprocessors, clusters, and grids of computers and then consume energy, so they need an energy analysis study for their different implementations over multiprocessors. The context for this thesis is to make a modern and competitive effort to extend the capability of present intelligent search optimization techniques. Analyzing the different sequential and parallel metaheuristics considering its energy consumption requires a deep investigation of the numerical performance, the execution time for efficient future designing to these algorithms. We present a study of the speed-up of the different parallel implementations over a different number of computing units. Moreover, we analyze and compare the energy consumption and numerical performance of the sequential/parallel algorithms and their components: a jump in the efficiency of the algorithms that would probably have a wide impact on the domains involved.El Instituto Egipcio en Madrid, dependiente del Gobierno de Egipto

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Parallel Evolutionary Algorithms for Energy Aware Scheduling

    Get PDF
    International audienceReducing energy consumption is an increasingly important issue in computing and embedded systems. In computing systems, minimizing energy consumption can significantly reduces the amount of energy bills. The demand for computing systems steadily increases and the cost of energy continues to rise. In embedded systems, reducing the use of energy allows to extend the autonomy of these systems. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. This chapter gives an overview of the main methods used to reduce the energy consumption in computing and embedded systems. As a use case and to give an example of a method, the chapter describes our new parallel bi-objective hybrid genetic algorithm that takes into account the completion time and the energy consumption. In terms of energy consumption, the obtained results show that our approach outperforms previous scheduling methods by a significant margin. In terms of completion time, the obtained schedules are also shorter than those of other algorithms

    Estrategias de paralización para la optimización de métodos computacionales en el descubrimiento de nuevos fármacos.

    Get PDF
    El descubrimiento de fármacos es un proceso largo y costoso que involucra varias etapas; entre ellas destaca la identificación de candidatos a fármacos; es decir moléculas potencialmente activas para neutralizar una determinada proteína involucrada en una enfermedad. Esta etapa se fundamenta en la optimización del acoplamiento molecular entre un receptor y un ingente número de candidatos a fármacos, para determinar cuál de estos candidatos obtiene una mayor intensidad en el acoplamiento. El acoplamiento molecular entre dos compuestos bioactivos está sujeto a una serie de fenómenos físicos presentes en la naturaleza y que se modelan a través de una función de scoring. Estos modelos representan los comportamientos de las moléculas en la naturaleza, permitiendo trasladar esta interacción molecular a una simulación en plataformas computacionales de silicio. Esta tesis doctoral plantea la aceleración y mejora de los métodos de descubrimiento de nuevos fármacos mediante técnicas de inteligencia artificial y paralelismo. Se propone un esquema metaheurístico parametrizado y paralelo que determine la interacción molecular entre compuestos bioactivos. Las técnicas metaheurísticas son técnicas algorítmicas empleadas, generalmente, en la optimización de cualquier tipo de problema, proporcionando soluciones satisfactorias. Algunos ejemplos de metaheurísticas incluyen búsquedas locales; que centran su campo de actuación a su entorno de soluciones (vecinos) más cercanos; búsquedas basadas en poblaciones muy utilizadas en la simulación de procesos biológicos y entre los que destacan los algoritmos evolutivos o las búsquedas dispersas por mencionar algunos ejemplos. Los esquemas parametrizados de metaheurísticas definen una serie de funciones básicas (Inicializar, Fin, Seleccionar, Combinar, Mejorar e Incluir) a fin de parametrizar el tipo de metaheurística concreta a instanciar en cada ejecución de la aplicación, permitiendo así no sólo la optimización del problema a resolver, sino también del algoritmo empleado para su resolución. Trabajar con una combinación de parámetros u otra es un factor vital para encontrar una buena solución al problema. Para abordar este número elevado de parámetros necesitamos alguna estrategia para este nuevo problema de optimización que surge. Esta estrategia es la hiperheurística, que busca la mejor de entre un conjunto de metaheurísticas aplicadas a un mismo problema. La gran mayoría de algoritmos metaheurísticos son, por definición, masivamente paralelos, y por tanto su implementación en plataformas secuenciales compromete tanto la eficiencia como la eficacia de los mismos. En ésta tesis doctoral se adapta además la instanciación del esquema metaheurístico a plataformas masivamente paralelas y heterogéneas como procesadores de memoria compartida y tarjetas gráficas. Las técnicas masivamente paralelas en GPU con soporte CUDA ayudan a realizar estos cálculos poniendo a disposición de la aplicación miles de núcleos capaces de funcionar en paralelo y, además, con la posibilidad de compartir memoria entre ellos y así reducir aún más los accesos a memoria. Aun así, existen compuestos celulares de decenas de miles de átomos para los que el uso de una sola GPU puede ser insuficiente, convirtiéndola en un cuello de botella. Esto hace necesario extender el esquema a multiGPU para dividir la carga computacional y poder abordar este tipo de compuestos con suficientes garantías de rendimiento. Para mejorar el rendimiento y maximizar la paralelización de la aplicación, es fundamental aprovechar al máximo los recursos que nos ofrece la máquina, por ello, se realiza un trabajo previo para ajustar los parámetros de la opción paralela elegida al entorno de ejecución y trabajar con los parámetros que mejor se adapten a la máquina. En un nodo, podemos tener un número limitado de GPUs, y para simular una molécula podemos obtener buenos rendimientos, pero en el problema de descubrimiento de fármacos, podemos tener millones de candidatos a fármacos con los que simular. En este caso, escalamos a un clúster de cómputo. Uno de los enfoques tomados por la comunidad para aprovechar todos los recursos de un clúster de computadores, de manera transparente al usuario, ha sido la virtualización del sistema. Entornos como (VMWARE, XEN) virtualizan todo el sistema y no solo una parte, siendo muy inadecuado en entornos de computación de alto rendimiento, ya que las restricciones a que deben someterse al ser un entorno compartido, introducen una sobrecarga que no es posible asumir. En lugar de virtualizar todo el sistema, sería virtualizar solo un conjunto de recursos específicos, como las GPUs. Este trabajo lo realiza un middleware muy potente denominado rCUDA. Este software permite el uso simultáneo y remoto de GPUs con soporte CUDA. Para habilitar la aceleración remota de GPUs, este software del sistema crea dispositivos virtuales compatibles con CUDA en máquinas sin GPUs locales. Además, rCUDA aporta una reducción de la complejidad algorítmica, evitando utilizar técnicas basadas en paso de mensajes (MPI), muy utilizadas en este tipo de entornos de cómputo. Las técnicas algorítmicas que se van a desarrollar, van a posibilitar la elección de las diferentes plataformas de cómputo disponibles optimizando el entorno de ejecución y, balanceando la carga de trabajo con los parámetros de configuración más idóneos.Ingeniería, Industria y Construcció
    • …
    corecore