572 research outputs found

    Machine Learning based Wind Power Forecasting for Operational Decision Support

    Get PDF
    To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes an extremely hot topic since global warming is the most serious global environmental problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for generating electricity leads to environment pollution and exacerbates global warning. However, large-scale development of hydropower increases greenhouse gas emissions and greenhouse effects. This research is related to knowledge of wind power forecasting (WPF) and machine learning (ML). This research is built around one central research question: How to improve the accuracy of WPF by using AI methods? A pilot conceptual system combining meteorological information and operations management has been formulated. The main contribution is visualized in a proposed new framework, named Meteorological Information Service Decision Support System, consisting of a meteorological information module, wind power prediction module and operations management module. This conceptual framework has been verified by quantitative analysis in empirical cases. This system utilizes meteorological information for decision-making based on condition-based maintenance in operations and management for the purpose of optimizing energy management. It aims to analyze and predict the variation of wind power for the next day or the following week to develop scheduling planning services for WPEs based on predicting wind speed for every six hours, which is short-term wind speed prediction, through training, validating, and testing dataset. Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study presents a carefully designed wind speed prediction model which combines fully-connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each model is tested by using reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a significant advantage on training time while comparing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates great potential of the optimized deep learning (DL) method, which is a subset of machine learning (ML), in improving local weather forecast on the coding platform of Python. The results indicate that, by using Meteorological Information Service Decision Support System, it is possible to support effective decision-making and create timely actions within the WPEs. Findings from this research contribute to WPF in WPEs. The main contribution of this research is achieving decision optimization on a decision support system by using ML. It was concluded that the proposed system is very promising for potential applications in wind (power) energy management

    Sustainable Supply Chain Management

    Get PDF
    The book is a collection of studies dedicated to different perspectives of three dimensions or pillars of the sustainability of supply chain and supply chain management - economic, environmental, and social - and other aspects related to performance evaluation, optimization, and modelling of and for sustainable supply chain management, and thus presents another valuable contribution to sustainable development and sustainable way of life

    Improving the sustainability of coal SC in both developed and developing countries by incorporating extended exergy accounting and different carbon reduction policies

    Get PDF
    In the age of Industry 4.0 and global warming, it is inevitable for decision-makers to change the way they view the coal supply chain (SC). In nature, energy is the currency, and nature is the source of energy for humankind. Coal is one of the most important sources of energy which provides much-needed electricity, as well as steel and cement production. This manuscript-based PhD thesis examines the coal SC network as well as the four carbon reduction strategies and plans to develop a comprehensive model for sustainable design. Thus, the Extended Exergy Accounting (EEA) method is incorporated into a coal SC under economic order quantity (EOQ) and economic production quantity (EPQs) in an uncertain environment. Using a real case study in coal SC in Iran, four carbon reduction policies such as carbon tax (Chapter 5), carbon trade (Chapter 6), carbon cap (Chapter 7), and carbon offset (Chapter 8) are examined. Additionally, all carbon policies are compared for sustainable performance of coal SCs in some developed and developing countries (the USA, China, India, Germany, Canada, Australia, etc.) with the world's most significant coal consumption. The objective function of the four optimization models under each carbon policy is to minimize the total exergy (in Joules as opposed to Dollars/Euros) of the coal SC in each country. The models have been solved using three recent metaheuristic algorithms, including Ant lion optimizer (ALO), Lion optimization algorithm (LOA), and Whale optimization algorithm (WOA), as well as three popular ones, such as Genetic algorithm (GA), Ant colony optimization (ACO), and Simulated annealing (SA), are suggested to determine a near-optimal solution to an exergy fuzzy nonlinear integer-programming (EFNIP). Moreover, the proposed metaheuristic algorithms are validated by using an exact method (by GAMS software) in small-size test problems. Finally, through a sensitivity analysis, this dissertation compares the effects of applying different percentages of exergy parameters (capital, labor, and environmental remediation) to coal SC models in each country. Using this approach, we can determine the best carbon reduction policy and exergy percentage that leads to the most sustainable performance (the lowest total exergy per Joule). The findings of this study may enhance the related research of sustainability assessment of SC as well as assist coal enterprises in making logical and measurable decisions

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Collaboration modes and advantages in supply chain

    Get PDF
    This research aims to address supply chain collaboration with a perspective of broader three-dimensional relationship, not a linear two-dimensional relationship discussed broadly in previous research. Case study was adopted for this research, and data collection was mainly conducted via interview. The research results highlighted that supply chain collaborations are common practice across all levels of the pharmaceutical supply chain. The results also indicated that the different strengthen levels of barging power among collaborative partners will influence the achieved advantages at different supply chain levels, including strategic, operational and political levels

    Smart manufacturing and supply chain management

    Get PDF
    In the fourth industrial revolution, smart manufacturing will be characterized by adaptability, resource efficiency and ergonomics as well as the integration of customers and business partners in business and value processes. Business model, operations management, workforce and manufacturing process all face substantial transformations to reasoning the manufacturing process. This paper explores the impacts of smart manufacturing on supply chain management, and develops several propositions to improve supply chain performance under the context of smart manufacturing

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.info:eu-repo/semantics/publishedVersio

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases
    • …
    corecore