203 research outputs found

    Design of Nonlinear PID Controllers and Their Application to a Heat Exchanger System for LNG-fuelled Marine Engines

    Get PDF
    Excessive use of fossil fuels resources is adding several types of greenhouse gases which make the earth warmer. Emissions from ship's exhausts contribute to global climate change, too. The International Maritime Organization (IMO) has adopted regulations to reduce the emission of air pollutants from international shipping, such as major air pollutants, carbon dioxide (CO2), nitrogen oxides (NOx), and sulphur oxides (SOx) under Annex VI of the 1997 MARPOL protocol. Likewise, as regulations on the emission of major air pollutants have become internationally strict, the development of environmentally friendly vessels and engines is required. One of the globally accepted means of reducing emission gases is the use of more eco-friendly fuel, LNG (Liquefied Natural Gas). LNG as a marine fuel reduces air pollutants as referred compared to traditional heavy fuel oil (HFO). Recently, large engine manufacturers are developing LNG-fuelled marine engines. In order to use this cryogenic LNG as a fuel, it is necessary to change it back to a gaseous state. A heat exchanger is used to regasify LNG. The heat exchange takes place between LNG and glycol on the primary loop, and heat exchange occurs between glycol and steam on the secondary loop. These series of processes are called LNG regasification. To control the temperature of the heat exchanger, it is necessary to model the heat exchanger. However, it is not easy to obtain an accurate mathematical model because the heat exchanger has non-linearity and time-varying characteristics. In addition, a fixed-gain controller is bound to have a limitation in its function if parameters of the heat exchanger are changed. Thus, various techniques have been studied to improve the adaptability and robustness of the controller. Recently, there has been using nonlinear PID (NPID) controller for the controlled system which have highly nonlinear and time-varying characteristics during operation. Therefore, this thesis proposes two types of the nonlinear proportional, integral, derivative (NPID) controllers to control the glycol temperature of the regasification system for LNG-fuelled marine engines. The Fully-Nonlinear PID (F-NPID) controller has a structure that the error between the set-point (or reference input) and output (or the measured output) is scaled nonlinearly, and input into the controller to derive proportional, integral, and derivative controllers. The Partial-Nonlinear PID (P-NPID) controller uses the conventional linear PD controller and only I controller uses the method of F-NPID controller. In this case, the nonlinear functions are implemented by the Fuzzy model of Takagi-Sugeno (T-S) type. In addition, the error is continuously scaled so that outstanding control performance can be maintained even when the operating environment is changed, thereby improving the swiftness and the closeness of responses. Also, the parameters of the two proposed controllers are optimally tuned in terms of minimizing the integral of the absolute error (IAE) objective function based on the genetic algorithm (GA). Meanwhile, it is necessary to examine the stability of overall feedback system that can be caused by introducing nonlinear functions during controller design. For this, the stability of the overall feedback system is analyzed by applying the circle stability theorems, which is often used for stability analysis of nonlinear problems. The proposed controllers are verified their performances which are the set-point tracking, robustness against noise and parameter changes, disturbance rejection performances by comparing with two conventional PID controllers and a conventional NPID controller.Chapter 1. Introduction 1 1.1 Research background and trends 1 1.2 Research content and composition 6 Chapter 2. LNG-fuelled Marine Engines 8 2.1 Changes of LNG-fuelled marine engines 8 2.2 Fuel injection of LNG-fuelled marine engines 10 2.3 Fuel supply system of LNG-fuelled marine engines 13 Chapter 3. Modeling of LNG Regasification System 17 3.1 Heat exchanger 17 3.2 LNG regasification system 18 3.3 Modeling of the secondary loop heat exchanger of LNG regasification system 19 3.3.1 Model of an I/P converter 19 3.3.2 Model of a pneumatic control valve 20 3.3.3 Model of a heat exchanger 23 3.3.4 Model of a disturbance 27 3.3.5 Model of a RTD sensor 28 3.3.6 Model of a time delay 29 3.3.7 Open-loop control system 30 Chapter 4. Surveys of Existing PID Controllers 32 4.1 Linear PID controller 32 4.1.1 Structure of the conventional PID controller 32 4.1.2 Characteristics of control actions 33 4.1.3 Effects of PID controller gains 36 4.2 Gain tuning of the conventional PID controller 37 4.2.1 Ziegler-Nichols tuning method 37 4.2.2 Tyreus-Luyben tuning method 40 4.3 Practical PID controller 41 4.4 Existing nonlinear PID controllers 44 4.4.1 Seraji’s NPID controller 45 4.4.2 Korkmaz’s NPID controller 48 Chapter 5. Suggestion of the Proposed Nonlinear PID Controllers 52 5.1 Fully-nonlinear PID controller 52 5.1.1 Nonlinear P block 53 5.1.2 Nonlinear D block 57 5.1.3 Nonlinear I block 57 5.1.4 Relationship between and 60 5.2 Partially-nonlinear PID controller 62 5.2.1 Linear PD block 63 5.2.2 Nonlinear I block 63 5.3 Feedback control systems 63 5.3.1 Modified F-NPID control system 63 5.3.2 P-NPID control system 66 5.4 Tuning of the controller parameters 68 5.4.1 Genetic algorithm 68 5.4.2 Optimal tuning of the controller parameters 73 Chapter 6. Stability Analysis 75 6.1 System description 75 6.2 Basic definitions and theorems 76 6.3 Stability of the NPID control systems 86 6.3.1 Sector condition of nonlinear block 86 6.3.2 Stability analysis of F-NPID control system 87 6.3.3 Stability analysis of P-NPID control system 88 Chapter 7. Simulation and Discussion of Results 90 7.1 Controller parameter tuning 90 7.2 Reponses to set-point changes 91 7.3 Reponses to noise rejection 94 7.4 Reponses to system parameter changes 95 7.5 Reponses to disturbance changes 97 Chapter 8. Conclusion 99 References 101Docto

    Soft sensor development and process control of anaerobic digestion

    Get PDF
    This thesis focuses on soft sensor development based on fuzzy logic used for real time online monitoring of anaerobic digestion to improve methane output and for robust fermentation. Important process parameter indicators such as pH, biogas production, daily difference in pH and daily difference in biogas production were used to infer alkalinity, a reliable indicator of process stability. Additionally, a fuzzy logic and a rule-based controller were developed and tested with single stage anaerobic digesters operating with cow slurry and cellulose. Alkalinity predictions from the fuzzy logic algorithm were used by both controllers to regulate the organic loading rate that aimed to optimise the biogas process. The predictive performance of a software sensor determining alkalinity that was designed using fuzzy logic and subtractive clustering and was validated against multiple linear regression models that were developed (Partner N° 2, Rothamsted Research 2010) for the same purpose. More accurate alkalinity predictions were achieved by utilizing a fuzzy software sensor designed with less amount of data compared to a multiple linear regression model whose design was based on a larger database. Those models were utilised to control the organic loading rate of a twostage, semi-continuously fed stirred reactor system. Three 5l reactors without support media and three 5l reactors with different support media (burst cell reticulated polyurethane foam coarse, burst cell reticulated polyurethane foam medium and sponge) were operated with cow slurry for a period of seven weeks and twenty weeks respectively. Reactors with support media were proven to be more stable than the reactors without support media but did not exhibit higher gas productivity. Biomass support media were found to influence digester recovery positively by reducing the recovery period. Optimum process parameter ranges were identified for reactors with and without support media. Increased biogas production was found to occur when the loading rates were 3-3.5g VS/l/d and 4-5g VS/l/d respectively. Optimum pH ranges were identified between 7.1-7.3 and 6.9-7.2 for reactors with and without support media respectively, whereas all reactors became unstable at ph<6.9. Alkalinity levels for system stability appeared to be above 3500 mg/l of HCO3 - for reactors without media and 3480 mg/l of HCO3 - for reactors with support media. Biogas production was maximized when alkalinity was 3 between 3500-4500 mg/l of HCO3 - for reactors without support media and 3480- 4300 mg/l of HCO3 - for reactors with support media. Two fuzzy logic models predicting alkalinity based on the operation of the three 5l reactors with support media were developed (FIS I, FIS II). The FIS II design was based on a larger database than FIS I. FIS II performance when applied to the reactor where sponge was used as the support media was characterized by quite good MAE and bias values of 466.53 mg/l of HCO3- and an acceptable value for R2= 0.498. The NMSE was close to 0 with a value of 0.03 and a slightly higher FB= 0.154 than desired. The fuzzy system robustness was tested by adding NaHCO3 to the reactor with the burst cell reticulated polyurethane foam medium and by diluting the reactor where sponge was used as the support media with water. FIS I and FIS II were able to follow the system output closely in the first case, but not in the second. FIS II functionality as an alkalinity predictor was tested through the application on a 28l cylindrical reactor with sponge as the biomass support media treating cow manure. If data that was recorded when severe temperature fluctuations occurred (that highly impact digester performance), are excluded, FIS II performance can be characterized as good by having R2= 0.54 and MAE=Bias= 587 mg/l of HCO3-. Predicted alkalinity values followed observed alkalinity values closely during the days that followed NaHCO3 addition and water dilution. In a second experiment a rulebased and a Mamdani fuzzy logic controller were developed to regulate the organic loading rate based on alkalinity predictions from FIS II. They were tested through the operation of five 6.5l reactors with biomass support media treating cellulose. The performance indices of MAE=763.57 mg/l of HCO3-, Bias= 398.39 mg/l of HCO3-, R2= 0.38 and IA= 0.73 indicate a pretty good correlation between predicted and observed values. However, although both controllers managed to keep alkalinity within the desired levels suggested for stability (>3480 mg/l of HCO3-), the reactors did not reach a stable state suggesting that different loading rates should be applied for biogas systems treating cellulose.New Generation Biogas (NGB

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamientoPostprint (published version

    Agent-based modelling and Swarm Intelligence in systems engineering

    Get PDF
    El objetivo de la tesis doctoral es evaluar la utilidad de las técnicas Modelado Basado en Agentes, algoritmos de optimización Swarm Intelligence y programación paralela sobre tarjeta gráfica en el campo de la Ingeniería de Sistemas y Automática. Se ha realizado un revisión bibliográfica y desarrollado un marco de desarrollo de la técnica de Modelado Basado en Agentes. Esta técnica se ha empleado para realizar un modelo de un reactor de fangos activados (que se engloba dentro del proceso de depuración de aguas residuales). Se ha desarrollado una notación complementaria para la descripción de modelos basados en agentes desde el punto de vista de la ingeniería de sistemas. Se ha presentado asimismo un algoritmo de optimización basado en agentes bajo la filosofía Swarm Intelligence. Se han trabajado con las técnicas de paralelización sobre tarjeta gráfica para reducir los tiempos de simulación de modelos y algoritmos. Se trata por lo tanto de un tesis de integración de varias tecnologías.Departamento de Ingeniería de Sistemas y Automátic

    MULTI-MODEL SYSTEMS IDENTIFICATION AND APPLICATION

    Get PDF

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamient

    Advanced PID Control Optimisation and System Identification for Multivariable Glass Furnace Processes by Genetic Algorithms

    Get PDF
    This thesis focuses on the development and analysis of general methods for the design of optimal discrete PID control strategies for multivariable glass furnace processes, where standard genetic algorithms (SGAs) are applied to optimise specially formulated objective functions. Furthermore, a strong emphasis is given on the realistic model parameters identi cation method, which is illustrated to be applicable to a wide range of higher order model parameters identi cation problems. A complete, realistic and continuous excess oxygen model with nonlinearity effect was developed and the model parameters were identified. The developed excess oxygen model consisted of three sub-models to characterise the real plant response. The developed excess oxygen model was evaluated and compared with real plant dynamic response data, which illustrated the high degree of accuracy of the developed model. A new technique named predetermined time constant approximation was proposed to make an assumption on the initial value of a predetermined time constant, whose motive is to facilitate the SGAs to explore and exploit an optimal value for higher order of continuous model's parameters identi cation. Also, the proposed predetermined time constant approximation technique demonstrated that the population diversity is well sustained while exploring the feasible search region and exploiting to an optimal value. In general, the proposed method improves the SGAs convergence rate towards the global optimum and illustrated the effectiveness. An automatic tuning of decentralised discrete PID controllers for multivariable processes, based on SGAs, was proposed. The main improvement of the proposed technique is the ability to enhance the control robustness and to optimise discrete PID parameters by compensating the loop interaction of a multivariable process. This is attained by adding the individually optimised objective function of glass temperature and excess oxygen processes as one objective function, to include the total effect of the loop interaction by applying step inputs on both set points, temperature and excess oxygen, at two different time periods in one simulation. The effectiveness of the proposed tuning technique was supported by a number of simulation results using two other SGAs conventional tuning techniques with 1st and 2nd order control oriented models. It was illustrated that, in all cases, the resulting discrete PID control parameters completely satisfied all performance specifications. A new technique to minimise the fuel consumption for glass furnace processes while sustaining the glass temperature is proposed. This proposed technique is achieved by reducing the excess oxygen within the optimum thermal efficiency region within 1.7% to 3.2%, which is approximately equal to about 10% to 20% of excess air. Therefore, by reducing the excess oxygen set point within the optimum region, 2.45% to 2%, the fuel consumption is minimised from 0:002942kg/sec to 0:002868kg/sec while the thermal efficiency of the glass temperature is sustained at the desired set point (1550K). In addition, a reduction in excess oxygen within methane combustion guidelines will assure that undesirable emissions are in control throughout the combustion process. The efficiencies of the proposed technique were supported by a number of simulation results applying the three SGAs controller tuning techniques. It was illustrated that, in all cases, the fraction of excess oxygen reduction results in a great minimisation of fuel consumption over long plant operating periods
    corecore