283 research outputs found

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    ATM Cash demand forecasting in an Indian Bank with chaos and deep learning

    Full text link
    This paper proposes to model chaos in the ATM cash withdrawal time series of a big Indian bank and forecast the withdrawals using deep learning methods. It also considers the importance of day-of-the-week and includes it as a dummy exogenous variable. We first modelled the chaos present in the withdrawal time series by reconstructing the state space of each series using the lag, and embedding dimension found using an auto-correlation function and Cao's method. This process converts the uni-variate time series into multi variate time series. The "day-of-the-week" is converted into seven features with the help of one-hot encoding. Then these seven features are augmented to the multivariate time series. For forecasting the future cash withdrawals, using algorithms namely ARIMA, random forest (RF), support vector regressor (SVR), multi-layer perceptron (MLP), group method of data handling (GMDH), general regression neural network (GRNN), long short term memory neural network and 1-dimensional convolutional neural network. We considered a daily cash withdrawals data set from an Indian commercial bank. After modelling chaos and adding exogenous features to the data set, we observed improvements in the forecasting for all models. Even though the random forest (RF) yielded better Symmetric Mean Absolute Percentage Error (SMAPE) value, deep learning algorithms, namely LSTM and 1D CNN, showed similar performance compared to RF, based on t-test.Comment: 20 pages; 6 figures and 3 table

    A Novel Time Series Prediction Approach Based on a Hybridization of Least Squares Support Vector Regression and Swarm Intelligence

    Get PDF
    This research aims at establishing a novel hybrid artificial intelligence (AI) approach, named as firefly-tuned least squares support vector regression for time series prediction (FLSVR TSP ). The proposed model utilizes the least squares support vector regression (LS-SVR) as a supervised learning technique to generalize the mapping function between input and output of time series data. In order to optimize the LS-SVR's tuning parameters, the FLSVR TSP incorporates the firefly algorithm (FA) as the search engine. Consequently, the newly construction model can learn from historical data and carry out prediction autonomously without any prior knowledge in parameter setting. Experimental results and comparison have demonstrated that the FLSVR TSP has achieved a significant improvement in forecasting accuracy when predicting both artificial and real-world time series data. Hence, the proposed hybrid approach is a promising alternative for assisting decision-makers to better cope with time series prediction

    Hybrid Predictive Models for Accurate Forecasting in PV Systems

    Get PDF
    The accurate forecasting of energy production from renewable sources represents an important topic also looking at different national authorities that are starting to stimulate a greater responsibility towards plants using non-programmable renewables. In this paper the authors use advanced hybrid evolutionary techniques of computational intelligence applied to photovoltaic systems forecasting, analyzing the predictions obtained by comparing different definitions of the forecasting error
    • …
    corecore