68 research outputs found

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Biologically Plausible Information Propagation in a CMOS Integrate-and-Fire Artificial Neuron Circuit with Memristive Synapses

    Get PDF
    Neuromorphic circuits based on spikes are currently envisioned as a viable option to achieve brain-like computation capabilities in specific electronic implementations while limiting power dissipation given their ability to mimic energy efficient bio-inspired mechanisms. While several network architectures have been developed to embed in hardware the bio-inspired learning rules found in the biological brain, such as the Spike Timing Dependent Plasticity, it is still unclear if hardware spiking neural network architectures can handle and transfer information akin to biological networks. In this work, we investigate the analogies between an artificial neuron combining memristor synapses and rate-based learning rule with biological neuron response in terms of information propagation from a theoretical perspective. Bio-inspired experiments have been reproduced by linking the biological probability of release with the artificial synapses conductance. Mutual information and surprise have been chosen as metrics to evidence how, for different values of synaptic weights, an artificial neuron allows to develop a reliable and biological resembling neural network in terms of information propagation and analysi

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Classification using Dopant Network Processing Units

    Get PDF

    Applications of memristors in conventional analogue electronics

    Get PDF
    This dissertation presents the steps employed to activate and utilise analogue memristive devices in conventional analogue circuits and beyond. TiO2 memristors are mainly utilised in this study, and their large variability in operation in between similar devices is identified. A specialised memristor characterisation instrument is designed and built to mitigate this issue and to allow access to large numbers of devices at a time. Its performance is quantified against linear resistors, crossbars of linear resistors, stand-alone memristive elements and crossbars of memristors. This platform allows for a wide range of different pulsing algorithms to be applied on individual devices, or on crossbars of memristive elements, and is used throughout this dissertation. Different ways of achieving analogue resistive switching from any device state are presented. Results of these are used to devise a state-of-art biasing parameter finder which automatically extracts pulsing parameters that induce repeatable analogue resistive switching. IV measurements taken during analogue resistive switching are then utilised to model the internal atomic structure of two devices, via fittings by the Simmons tunnelling barrier model. These reveal that voltage pulses modulate a nano-tunnelling gap along a conical shape. Further retention measurements are performed which reveal that under certain conditions, TiO2 memristors become volatile at short time scales. This volatile behaviour is then implemented into a novel SPICE volatile memristor model. These characterisation methods of solid-state devices allowed for inclusion of TiO2 memristors in practical electronic circuits. Firstly, in the context of large analogue resistive crossbars, a crosspoint reading method is analysed and improved via a 3-step technique. Its scaling performance is then quantified via SPICE simulations. Next, the observed volatile dynamics of memristors are exploited in two separate sequence detectors, with applications in neuromorphic engineering. Finally, the memristor as a programmable resistive weight is exploited to synthesise a memristive programmable gain amplifier and a practical memristive automatic gain control circuit.Open Acces

    Memristor based neural networks: Feasibility, theories and approaches

    Get PDF
    Memristor-based neural networks refer to the utilisation of memristors, the newly emerged nanoscale devices, in building neural networks. The memristor was first postulated by Leon Chua in 1971 as the fourth fundamental passive circuit element and experimentally validated by one of HP labs in 2008. Memristors, short for memory-resistor, have a peculiar memory effect which distinguishes them from resistors. By applying a bias voltage across it, the resistance of a memristor, namely memristance, is changed. In addition, the memristance is retained when the power supply is removed which demonstrates the non-volatility of the memristor. Memristor-based neural networks are currently being researched in order to replace complementary metal-oxide-semiconductor (CMOS) devices in neuromorphic circuits with memristors and to investigate their potential applications. Current research primarily focuses on the utilisation of memristors as synaptic connections between neurons, however in any application it may be possible to allow memristors to perform computation in a natural way which attempts to avoid additional CMOS devices. Examples of such methods utilised in neural networks are presented in this thesis, such as memristor-based cellular neural network (CNN) structures, the memristive spiking-time dependent plasticity (STDP) model and the exploration of their potential applications. This thesis presents manifold studies in the topic of memristor-based neural networks from theories and feasibility to approaches to implementations. Studies are divided into two parts which are the utilisation of memristors in non-spiking neural networks and spiking neural networks (SNNs). At the beginning of the thesis, fundamentals of neural networks and memristors are explored with the analysis of the physical properties and viv-i behaviour of memristors. In the studies of memristor-based non-spiking neural networks, a staircase memristor model is presented based on memristors which have multi-level resistive states and the delayed-switching effect. This model is adapted to CNNs and echo state networks (ESNs) as applications that benefit from memristive implementations. In the studies of memristor-based SNNs, a trace-based memristive STDP model is proposed and discussed to overcome the incompatibility issues of the previous model with all-to-all spike interaction. The work also presents applications of the trace-based memristive model in associative learning with retention loss and supervised learning. The computational results of experiments with different applications have shown that memristor-based neural networks will be advantageous in building synchronous or asynchronous parallel neuromorphic systems. The work presents several new findings on memristor modelling, memristor-based neural network structures and memristor-based associative learning. These studies address unexplored research areas in the context of memristor-based neural networks to the best of our knowledge, and therefore form original contributions

    Neuromorphic computing using non-volatile memory

    Get PDF
    Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and ‘Memcomputing’. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix–vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices – including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs – have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.11Yscopu
    corecore