11,575 research outputs found

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Integrated Face Analytics Networks through Cross-Dataset Hybrid Training

    Full text link
    Face analytics benefits many multimedia applications. It consists of a number of tasks, such as facial emotion recognition and face parsing, and most existing approaches generally treat these tasks independently, which limits their deployment in real scenarios. In this paper we propose an integrated Face Analytics Network (iFAN), which is able to perform multiple tasks jointly for face analytics with a novel carefully designed network architecture to fully facilitate the informative interaction among different tasks. The proposed integrated network explicitly models the interactions between tasks so that the correlations between tasks can be fully exploited for performance boost. In addition, to solve the bottleneck of the absence of datasets with comprehensive training data for various tasks, we propose a novel cross-dataset hybrid training strategy. It allows "plug-in and play" of multiple datasets annotated for different tasks without the requirement of a fully labeled common dataset for all the tasks. We experimentally show that the proposed iFAN achieves state-of-the-art performance on multiple face analytics tasks using a single integrated model. Specifically, iFAN achieves an overall F-score of 91.15% on the Helen dataset for face parsing, a normalized mean error of 5.81% on the MTFL dataset for facial landmark localization and an accuracy of 45.73% on the BNU dataset for emotion recognition with a single model.Comment: 10 page

    LEARNet Dynamic Imaging Network for Micro Expression Recognition

    Full text link
    Unlike prevalent facial expressions, micro expressions have subtle, involuntary muscle movements which are short-lived in nature. These minute muscle movements reflect true emotions of a person. Due to the short duration and low intensity, these micro-expressions are very difficult to perceive and interpret correctly. In this paper, we propose the dynamic representation of micro-expressions to preserve facial movement information of a video in a single frame. We also propose a Lateral Accretive Hybrid Network (LEARNet) to capture micro-level features of an expression in the facial region. The LEARNet refines the salient expression features in accretive manner by incorporating accretion layers (AL) in the network. The response of the AL holds the hybrid feature maps generated by prior laterally connected convolution layers. Moreover, LEARNet architecture incorporates the cross decoupled relationship between convolution layers which helps in preserving the tiny but influential facial muscle change information. The visual responses of the proposed LEARNet depict the effectiveness of the system by preserving both high- and micro-level edge features of facial expression. The effectiveness of the proposed LEARNet is evaluated on four benchmark datasets: CASME-I, CASME-II, CAS(ME)^2 and SMIC. The experimental results after investigation show a significant improvement of 4.03%, 1.90%, 1.79% and 2.82% as compared with ResNet on CASME-I, CASME-II, CAS(ME)^2 and SMIC datasets respectively.Comment: Dynamic imaging, accretion, lateral, micro expression recognitio
    • …
    corecore