229 research outputs found

    Real-time estimation of the switching signal for perturbed switched linear systems

    Get PDF
    International audienceWe extend previous works of Fliess et al. [2008] on the estimation of the switching signal and of the state for switching linear systems to the perturbed case when the perturbation is structured that is when the perturbation is unknown but known to satisfy a certain differential equation (for example if the perturbation is constant then its time-derivative is zero). We characterize also singular inputs and/or perturbations for which the switched systems become undistinguishable. Several convincing numerical experiments are illustrating our techniques which are easily implementable

    Exponential stability for a class of uncertain linear hybrid time-delay systems and applications

    Full text link

    Modeling, Control and Optimisation of Hybrid Systems in a Manufacturing Setting

    Get PDF
    This study comprises a body of work that investigates the performance of hybrid manufacturing systems. And we have provided a valuable insight into the development of the optimisation techniques for hybrid manufacturing system. With the primary objective of developing prac-tical mathematical algorithms that balance trade-o? cost between product quality and completion time. For sta-bility criterion, a sliding mode control was deployed

    Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants

    Get PDF
    We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation

    Stabilization of saturated switching systems

    Get PDF

    Non-smooth model predictive control: stability and applications to hybrid systems

    Get PDF
    In this report we investigate the stability of hybrid systems in closed-loop with Model Predictive Controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability and exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for both terminal cost and constraint set and terminal equality constraint hybrid MPC, even though the considered Lyapunov function and the system dynamics may be discontinuous. For particular choices of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC cost, the stabilization conditions translate into a linear matrix inequality while, for an ∞-norm based MPC cost, they are obtained as ∞-norm inequalities. It is shown that by using ∞-norms, the terminal constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. New algorithms are developed for calculating polyhedral or piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer linear programming problem, which can be solved by standard optimization tools. Several examples illustrate the effectiveness of the developed methodology

    A Global Asymptotic Convergent Observer for SLAM

    Get PDF
    This paper examines the global convergence problem of SLAM algorithms, an issue that faces topological obstructions. This is because the state-space of attitude dynamics is defined on a non-contractible manifold: the special orthogonal group of order three SO(3). Therefore, this paper presents a novel, gradient-based hybrid observer to overcome these topological obstacles. The Lyapunov stability theorem is used to prove the globally asymptotic convergence of the proposed algorithm. Finally, comparative analyses of two simulations were conducted to evaluate the performance of the proposed scheme and to demonstrate the superiority of the proposed hybrid observer to a smooth observer.Comment: 7 pages, 8 figures, conferenc

    Real-time estimation for switched linear systems

    Get PDF
    International audienceWe extend previous works on real-time estimation, via algebraic techniques, to the recovering of the switching signal and of the state for switching linear systems. We characterize also singular inputs for which the switched systems become undistinguishable. Several convincing numerical experiments are illustrating our techniques which are easily implementable
    corecore