4,911 research outputs found

    Distortion Metrics of Composite Channels with Receiver Side Information

    Get PDF
    We consider transmission of stationary ergodic sources over non-ergodic composite channels with channel state information at the receiver (CSIR). Previously we introduced alternative capacity definitions to Shannon capacity, including outage and expected capacity. These generalized definitions relax the constraint of Shannon capacity that all transmitted information must be decoded at the receiver. In this work alternative end- to-end distortion metrics such as outage and expected distortion are introduced to relax the constraint that a single distortion level has to be maintained for all channel states. Through the example of transmission of a Gaussian source over a slow-fading Gaussian channel, we illustrate that the end-to-end distortion metrics dictate whether the source and channel coding can be separated for a communication system. We also show that the source and channel need to exchange information through an appropriate interface to facilitate separate encoding and decoding

    Wyner-Ziv Coding over Broadcast Channels: Digital Schemes

    Full text link
    This paper addresses lossy transmission of a common source over a broadcast channel when there is correlated side information at the receivers, with emphasis on the quadratic Gaussian and binary Hamming cases. A digital scheme that combines ideas from the lossless version of the problem, i.e., Slepian-Wolf coding over broadcast channels, and dirty paper coding, is presented and analyzed. This scheme uses layered coding where the common layer information is intended for both receivers and the refinement information is destined only for one receiver. For the quadratic Gaussian case, a quantity characterizing the overall quality of each receiver is identified in terms of channel and side information parameters. It is shown that it is more advantageous to send the refinement information to the receiver with "better" overall quality. In the case where all receivers have the same overall quality, the presented scheme becomes optimal. Unlike its lossless counterpart, however, the problem eludes a complete characterization

    Separate Source-Channel Coding for Broadcasting Correlated Gaussians

    Full text link
    The problem of broadcasting a pair of correlated Gaussian sources using optimal separate source and channel codes is studied. Considerable performance gains over previously known separate source-channel schemes are observed. Although source-channel separation yields suboptimal performance in general, it is shown that the proposed scheme is very competitive for any bandwidth compression/expansion scenarios. In particular, for a high channel SNR scenario, it can be shown to achieve optimal power-distortion tradeoff.Comment: 6 pages (with an extra proof), ISIT2011, to appea
    • ā€¦
    corecore