71 research outputs found

    Compound Models for Vision-Based Pedestrian Recognition

    Get PDF
    This thesis addresses the problem of recognizing pedestrians in video images acquired from a moving camera in real-world cluttered environments. Instead of focusing on the development of novel feature primitives or pattern classifiers, we follow an orthogonal direction and develop feature- and classifier-independent compound techniques which integrate complementary information from multiple image-based sources with the objective of improved pedestrian classification performance. After establishing a performance baseline in terms of a thorough experimental study on monocular pedestrian recognition, we investigate the use of multiple cues on module-level. A motion-based focus of attention stage is proposed based on a learned probabilistic pedestrian-specific model of motion features. The model is used to generate pedestrian localization hypotheses for subsequent shape- and texture-based classification modules. In the remainder of this work, we focus on the integration of complementary information directly into the pattern classification step. We present a combination of shape and texture information by means of pose-specific generative shape and texture models. The generative models are integrated with discriminative classification models by utilizing synthesized virtual pedestrian training samples from the former to enhance the classification performance of the latter. Both models are linked using Active Learning to guide the training process towards informative samples. A multi-level mixture-of-experts classification framework is proposed which involves local pose-specific expert classifiers operating on multiple image modalities and features. In terms of image modalities, we consider gray-level intensity, depth cues derived from dense stereo vision and motion cues arising from dense optical flow. We furthermore employ shape-based, gradient-based and texture-based features. The mixture-of-experts formulation compares favorably to joint space approaches, in view of performance and practical feasibility. Finally, we extend this mixture-of-experts framework in terms of multi-cue partial occlusion handling and the estimation of pedestrian body orientation. Our occlusion model involves examining occlusion boundaries which manifest in discontinuities in depth and motion space. Occlusion-dependent weights which relate to the visibility of certain body parts focus the decision on unoccluded body components. We further apply the pose-specific nature of our mixture-of-experts framework towards estimating the density of pedestrian body orientation from single images, again integrating shape and texture information. Throughout this work, particular emphasis is laid on thorough performance evaluation both regarding methodology and competitive real-world datasets. Several datasets used in this thesis are made publicly available for benchmarking purposes. Our results indicate significant performance boosts over state-of-the-art for all aspects considered in this thesis, i.e. pedestrian recognition, partial occlusion handling and body orientation estimation. The pedestrian recognition performance in particular is considerably advanced; false detections at constant detection rates are reduced by significantly more than an order of magnitude

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Pedestrian Detection Algorithms using Shearlets

    Get PDF
    In this thesis, we investigate the applicability of the shearlet transform for the task of pedestrian detection. Due to the usage of in several emerging technologies, such as automated or autonomous vehicles, pedestrian detection has evolved into a key topic of research in the last decade. In this time period, a wealth of different algorithms has been developed. According to the current results on the Caltech Pedestrian Detection Benchmark the algorithms can be divided into two categories. First, application of hand-crafted image features and of a classifier trained on these features. Second, methods using Convolutional Neural Networks in which features are learned during the training phase. It is studied how both of these types of procedures can be further improved by the incorporation of shearlets, a framework for image analysis which has a comprehensive theoretical basis
    • …
    corecore