336 research outputs found

    Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l1/l2 Regularization

    Get PDF
    The l1/l2 ratio regularization function has shown good performance for retrieving sparse signals in a number of recent works, in the context of blind deconvolution. Indeed, it benefits from a scale invariance property much desirable in the blind context. However, the l1/l2 function raises some difficulties when solving the nonconvex and nonsmooth minimization problems resulting from the use of such a penalty term in current restoration methods. In this paper, we propose a new penalty based on a smooth approximation to the l1/l2 function. In addition, we develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results. We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact l1/l2 term, on an application to seismic data blind deconvolution.Comment: 5 page

    A hybrid alternating proximal method for blind video restoration

    Get PDF
    International audienceOld analog television sequences suffer from a number of degradations. Some of them can be modeled through convolution with a kernel and an additive noise term. In this work, we propose a new blind deconvolution algorithm for the restoration of such sequences based on a variational formulation of the problem. Our method accounts for motion between frames, while enforcing some level of temporal continuity through the use of a novel penalty function involving optical flow operators, in addition to an edge-preserving regularization. The optimization process is performed by a proximal alternating minimization scheme benefiting from theoretical convergence guarantees. Simulation results on synthetic and real video sequences confirm the effectiveness of our method

    Choose your path wisely: gradient descent in a Bregman distance framework

    Get PDF
    We propose an extension of a special form of gradient descent --- in the literature known as linearised Bregman iteration -- to a larger class of non-convex functions. We replace the classical (squared) two norm metric in the gradient descent setting with a generalised Bregman distance, based on a proper, convex and lower semi-continuous function. The algorithm's global convergence is proven for functions that satisfy the Kurdyka-\L ojasiewicz property. Examples illustrate that features of different scale are being introduced throughout the iteration, transitioning from coarse to fine. This coarse-to-fine approach with respect to scale allows to recover solutions of non-convex optimisation problems that are superior to those obtained with conventional gradient descent, or even projected and proximal gradient descent. The effectiveness of the linearised Bregman iteration in combination with early stopping is illustrated for the applications of parallel magnetic resonance imaging, blind deconvolution as well as image classification with neural networks

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    On the convergence of a linesearch based proximal-gradient method for nonconvex optimization

    Get PDF
    We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical point if the objective function satisfies the Kurdyka-Lojasiewicz property at each point of its domain, under the assumption that a limit point exists. The proposed method is applied to a wide collection of image processing problems and our numerical tests show that our algorithm results to be flexible, robust and competitive when compared to recently proposed approaches able to address the optimization problems arising in the considered applications
    corecore