220 research outputs found

    On the Number of RF Chains and Phase Shifters, and Scheduling Design with Hybrid Analog-Digital Beamforming

    Full text link
    This paper considers hybrid beamforming (HB) for downlink multiuser massive multiple input multiple output (MIMO) systems with frequency selective channels. For this system, first we determine the required number of radio frequency (RF) chains and phase shifters (PSs) such that the proposed HB achieves the same performance as that of the digital beamforming (DB) which utilizes NN (number of transmitter antennas) RF chains. We show that the performance of the DB can be achieved with our HB just by utilizing rtr_t RF chains and 2rt(N−rt+1)2r_t(N-r_t + 1) PSs, where rt≤Nr_t \leq N is the rank of the combined digital precoder matrices of all sub-carriers. Second, we provide a simple and novel approach to reduce the number of PSs with only a negligible performance degradation. Numerical results reveal that only 20−4020-40 PSs per RF chain are sufficient for practically relevant parameter settings. Finally, for the scenario where the deployed number of RF chains (Na)(N_a) is less than rtr_t, we propose a simple user scheduling algorithm to select the best set of users in each sub-carrier. Simulation results validate theoretical expressions, and demonstrate the superiority of the proposed HB design over the existing HB designs in both flat fading and frequency selective channels.Comment: IEEE Transactions on Wireless Communications (Minor Revision

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Millimeter Wave Systems for Wireless Cellular Communications

    Full text link
    This thesis considers channel estimation and multiuser (MU) data transmission for massive MIMO systems with fully digital/hybrid structures in mmWave channels. It contains three main contributions. In this thesis, we first propose a tone-based linear search algorithm to facilitate the estimation of angle-of-arrivals of the strongest components as well as scattering components of the users at the base station (BS) with fully digital structure. Our results show that the proposed maximum-ratio transmission (MRT) based on the strongest components can achieve a higher data rate than that of the conventional MRT, under the same mean squared errors (MSE). Second, we develop a low-complexity channel estimation and beamformer/precoder design scheme for hybrid mmWave systems. In addition, the proposed scheme applies to both non-sparse and sparse mmWave channel environments. We then leverage the proposed scheme to investigate the downlink achievable rate performance. The results show that the proposed scheme obtains a considerable achievable rate of fully digital systems. Taking into account the effect of various types of errors, we investigate the achievable rate performance degradation of the considered scheme. Third, we extend our proposed scheme to a multi-cell MU mmWave MIMO network. We derive the closed-form approximation of the normalized MSE of channel estimation under pilot contamination over Rician fading channels. Furthermore, we derive a tight closed-form approximation and the scaling law of the average achievable rate. Our results unveil that channel estimation errors, the intra-cell interference, and the inter-cell interference caused by pilot contamination over Rician fading channels can be efficiently mitigated by simply increasing the number of antennas equipped at the desired BS.Comment: Thesi

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio
    • …
    corecore