596 research outputs found

    A Focus on Selection for Fixation

    Get PDF
    A computational explanation of how visual attention, interpretation of visual stimuli, and eye movements combine to produce visual behavior, seems elusive. Here, we focus on one component: how selection is accomplished for the next fixation. The popularity of saliency map models drives the inference that this is solved, but we argue otherwise. We provide arguments that a cluster of complementary, conspicuity representations drive selection, modulated by task goals and history, leading to a hybrid process that encompasses early and late attentional selection. This design is also constrained by the architectural characteristics of the visual processing pathways. These elements combine into a new strategy for computing fixation targets and a first simulation of its performance is presented. A sample video of this performance can be found by clicking on the "Supplementary Files" link under the "Article Tools" heading

    Toward an Imagined Speech-Based Brain Computer Interface Using EEG Signals

    Get PDF
    Individuals with physical disabilities face difficulties in communication. A number of neuromuscular impairments could limit people from using available communication aids, because such aids require some degree of muscle movement. This makes brain–computer interfaces (BCIs) a potentially promising alternative communication technology for these people. Electroencephalographic (EEG) signals are commonly used in BCI systems to capture non-invasively the neural representations of intended, internal and imagined activities that are not physically or verbally evident. Examples include motor and speech imagery activities. Since 2006, researchers have become increasingly interested in classifying different types of imagined speech from EEG signals. However, the field still has a limited understanding of several issues, including experiment design, stimulus type, training, calibration and the examined features. The main aim of the research in this thesis is to advance automatic recognition of imagined speech using EEG signals by addressing a variety of issues that have not been solved in previous studies. These include (1)improving the discrimination between imagined speech versus non-speech tasks, (2) examining temporal parameters to optimise the recognition of imagined words and (3) providing a new feature extraction framework for improving EEG-based imagined speech recognition by considering temporal information after reducing within-session temporal non-stationarities. For the discrimination of speech versus non-speech, EEG data was collected during the imagination of randomly presented and semantically varying words. The non-speech tasks involved attention to visual stimuli and resting. Time-domain and spatio-spectral features were examined in different time intervals. Above-chance-level classification accuracies were achieved for each word and for groups of words compared to the non-speech tasks. To classify imagined words, EEG data related to the imagination of five words was collected. In addition to words classification, the impacts of experimental parameters on classification accuracy were examined. The optimization of these parameters is important to improve the rate and speed of recognizing unspoken speech in on-line applications. These parameters included using different training sizes, classification algorithms, feature extraction in different time intervals and the use of imagination time length as classification feature. Our extensive results showed that Random Forest classifier with features extracted using Discrete Wavelet Transform from 4 seconds fixed time frame EEG yielded that highest average classification of 87.93% in classification of five imagined words. To minimise within class temporal variations, a novel feature extraction framework based on dynamic time warping (DTW) was developed. Using linear discriminant analysis as the classifier, the proposed framework yielded an average 72.02% accuracy in the classification of imagined speech versus silence and 52.5% accuracy in the classification of five words. These results significantly outperformed a baseline configuration of state-of-the art time-domain features

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Attention in Psychology, Neuroscience, and Machine Learning

    Get PDF
    Attention is the important ability to flexibly control limited computational resources. It has been studied in conjunction with many other topics in neuroscience and psychology including awareness, vigilance, saliency, executive control, and learning. It has also recently been applied in several domains in machine learning. The relationship between the study of biological attention and its use as a tool to enhance artificial neural networks is not always clear. This review starts by providing an overview of how attention is conceptualized in the neuroscience and psychology literature. It then covers several use cases of attention in machine learning, indicating their biological counterparts where they exist. Finally, the ways in which artificial attention can be further inspired by biology for the production of complex and integrative systems is explored

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Decoding Mental States after Severe Brain Injury

    Get PDF
    Some patients with disorders of consciousness retain sensory and cognitive abilities that are not apparent from their outward behaviour. It is crucial to identify and characterise these covert abilities for diagnosis, prognosis, and medical ethics. This thesis uses neuroimaging techniques to investigate cognitive preservation and awareness in patients who are behaviourally non-responsive due to acquired brain injuries. In the first chapter, a large sample of healthy volunteers, including experienced athletes and musicians, imagined actions of varying complexity and familiarity. Motor imagery involving certain complex, familiar actions correlated with a more robust sensorimotor rhythm. In the second chapter, several patients with disorders of consciousness participated in multiple experiments based on neural responses to mental imagery, including one task featuring complex, familiar imagined actions. Although the patients did not generate enhanced sensorimotor rhythms for the complex, familiar motor imagery, the detection of covert cognition was more sensitive owing to the multi-modal nature of the assessment. In the final empirical chapter, a sample of healthy volunteers and a heterogeneous cohort of patients with disorders of consciousness completed a novel oddball task based on tactile stimulation. Critically, this task delineated an attentional hierarchy in the patient sample, and patients with the ability to follow commands were differentiated from those unable to do so by event-related potential evidence of attentional orienting. Due to the heterogeneity of aetiology and pathology in the disorders of consciousness, these patients vary in their suitability for neuroimaging, the preservation of neural structures, and the cognitive resources available to them. Assessments of several perceptual and cognitive abilities supported by spatially-distinct brain regions and indexed by multiple neural signatures are therefore required to accurately characterise a patient’s abilities and probable subjective experience
    • …
    corecore