165 research outputs found

    Circuit - based transient model of grounding electrode with consideration of soil ionization and current rate of rise factors

    Get PDF
    The behaviour of a grounding electrode can be predicted by using either the electrical circuit model or electromagnetic computation. Despite its advantages over the latter, the grounding circuit model fails to accurately predict the behaviour under transient conditions due to the absence of two key factors, namely the soil ionization, and the current rate–of–rise. A new equivalent circuit model of a grounding electrode with dynamic circuit elements (Rd, Cd, and Ld) was developed to consider both soil ionization and current rate–of–rise factors. A generalized formula was derived to calculate the dynamic inductance, Ld, for all standard current wave shapes such as Conseil International des Grands Réseaux Électriques (CIGRE), double–exponential, and IEC 62305–1 (International Electrotechnical Commission). The computed inductance, Ld, dynamically changes with the change in the lightning current parameters, thus improving its accuracy for all current rate–of–rise conditions. The consideration for the soil ionization effect on grounding electrode resistance, Rd, and soil capacitance, Cd, within the equivalent circuit model was achieved by modelling the soil with a network of two layer capacitors (TLC) in which soil particles and air voids are the TLC components. Differential equations were derived to incorporate the soil ionization phenomenon inside the TLC network. The voltage response of the new equivalent circuit model and the dynamic circuit elements were determined by using the above–suggested methods, is more accurate than that of the conventionally determined grounding circuit models. The overall differences between the equivalent circuit model and several experiments are 3.3% for the electrode resistance and 2.8% for the electrode peak voltage. The new equivalent circuit model helps to optimize the overall grounding electrode design, and to provide a better fast transient protection and insulation coordination

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Investigating the effect of several model configurations on the transient response of gas-insulated substation during fault events using an electromagnetic field theory approach

    Get PDF
    Assessment of very fast transient overvoltage (VFTO) requires good knowledge of the behavior of gas-insulated substation when subjected to very high frequencies. The international standards and guidelines generically present only recommendations regarding the VFTO suppression without a technical and mathematical background. Therefore, to provide an accurate image regarding the critical locations across a gas-insulated substation (GIS) from a transient response point of view, a suitable modeling technique has to be identified and developed for the substation. The paper aimed to provide an accurate assessment of the GIS holistic transient response through an electromagnetic field theory (EMF) approach. This modeling technique has always been a difficult task when it came to gas-insulated substations. However, recent studies have shown that through suitable Computer-aided design models, representing the GIS metallic ensemble, accurate results can be obtained. The paper investigated several simplifications of the computational domain considering different gas-insulated substation configurations in order to identify a suitable modeling approach without any unnecessary computational effort. The analysis was performed by adopting the partial equivalent element circuit (PEEC) approach embedded into XGSLab software package. Obtained results could provide useful hints for grounding grid designers regarding the proper development and implementation of transient ground potential rise (TGPR) mitigation techniques across a gas-insulated substation

    Do Wind Turbines Amplify the Effects of Lightning Strikes A Full-Maxwell Modelling Approach

    Get PDF
    Wind turbines (WTs) can be seriously damaged by lightning strikes and they can be struck by a significant number of flashes. This should be taken into account when the WT lightning protection system is designed. Moreover, WTs represent a path for the lightning current that can modify the well-known effects of the lightning discharge in terms of radiated electromagnetic fields, which are a source of damage and interference for nearby structures and systems. In this paper, a WT struck by a lightning discharge is analyzed with a full-wave modelling approach, taking into account the details of the WT and its interactions with the lightning channel. The effects of first and subsequent return strokes are analyzed as well as that of the rotation angle of the struck blade. Results show that the lightning current along the WT is mainly affected by the ground reflection and by the reflection between the struck blade and the channel. The computed electromagnetic fields show that, for subsequent return strokes, the presence of a WT almost doubles their magnitude with respect to a lightning striking the ground. Such enhancement is emphasized when the inclined struck blade is considere

    Intelligent distribution network design

    Get PDF
    Distribution networks (medium voltage and low voltage) are subject to changes caused by re-regulation of the energy supply, economical and environmental constraints more sensitive equipment, power quality requirements and the increasing penetration of distributed generation. The latter is seen as one of the main challenges for today’s and future network operation and design. In this thesis it is investigated in what way these developments enforce intelligent distribution network design and new engineering tools. Furthermore it should be investigated how a new design and control strategy can contribute to meet the power quality and performance requirements in distribution networks in future. This thesis focuses on network structures that, typical for the Netherlands, are based on relatively short underground cables.Managing current and voltage in such networks both during normal and disturbed operation, requires a good network design and an adequate earthing concept. The limited size of Dutch distribution networks has a positive effect on power quality aspects and reliability. The use of impedance earthing for medium voltage (MV) cable networks reduces the risk of multi-phase faults that cause large fault currents and deep dips. It also reduces the risk on transient overvoltages due to re-striking of cable faults. A TN earthing system for the low voltage (LV) network reduces the risk of damaged apparatus and it maintains safety for people. However, care must be taken for the earthing of devices of other service providers, which requires a co-operative solution. The fast developments of computation techniques and IT equipment in the network opened the possibility to perform many calculations in short time based on both actual and historical data. Examples are the on-line distribution loadflow and the short-circuit calculation for protection coordination and intelligent fault location. In LV and MV network calculations the accuracy of the models and the availability of data are the main obstacles. Because of the unsymmetrical nature of load and generation in LV networks a multiple conductor model is needed. For safety calculations also the earth impedances have to be modelled as well as the neutral and protective earth impedances and their mutual interactions. The protection philosophy in MV networks must take into account the changing requirements regarding safety and power quality. An overall philosophy concerning both network and generator protection is necessary. New developments in substation automation benefit future upgrade and refurbishment of substation control and protection. As a result, also cheap,accurate and fast fault location becomes feasible, reducing the outage time of the customers. Next the influence of distributed generation on the above subjects is investigated. The increasing magnitude of short-circuit currents and the increasing voltage variations in the network are seen as a major challenge for the network planners. Conventional measures for reducing voltage problems may introduce problems with the short-circuit current level and vice versa. In networks which contain a large amount of both load and distributed generation, adverse voltage problems may occur, especially when the generation is located in the LV network. In order to reduce this, specific control strategies need to be developed. The last part of the thesis is related to these control strategies as a solution for operating future distribution networks. By introducing storage and power electronics, networks can be transformed into autonomously controlled networks. These networks remain an inseparable part of the electricity network but may behave in a fairly autonomous manner, both internally and externally, with respect to the rest of the network. The focus in this thesis is on maintaining an optimal voltage for all customers during all combinations of load and generation. Because of the autonomous behaviour of the control systems, their operation must be based on local measurements. A suggested approach is to replace the normal open point between MV feeders by a so called "intelligent node". This node is able to control the power flow in several feeders by means of power electronics and, if provided, by electricity storage. The voltage profile can be improved further, by introducing an intelligent voltage control on the HV/MV transformer feeding the distribution network. The simulation studies in this research have been performed on a realistic model of a typical Dutch MV/LV distribution system. Based on the results the following conclusions are drawn: • The HV/MV transformer control must be based on line drop compensation. This compensation must use the load situation instead of the measured exchange signal. The compensation factor must differ between cases of high load and of high generation. • The optimal control of the intelligent node is a voltage control, based on a linear dependence of the voltage at the node and the power flow towards that node. This method can be improved when the voltage of the MV bus bar in the substation is taken into account. • Methods to obtain a perfect voltage profile will lead to a storage device that is not available for this voltage level yet. • A voltage control based on a fixed value at both terminals of the intelligent node and at the MV bus bar of the HV/MV substation does not result in the optimal voltage profile, although guarantee a good voltage quality and might therefore be a good alternativ

    Investigation of transient and safety issues in gas insulated systems

    Get PDF
    This thesis investigates the occurrence, characteristics and effects of Very Fast Transients (VFTs) associated with disconnector switching operations in Gas Insulated Substations. VFTs are analysed and efforts are made to elucidate their behaviour through advanced simulation techniques. The initial motivation for this work was the occurrence of a surface flashover at a spacer, leading to a prolonged outage of the circuit in question and a significant repair effort. While post failure investigations were carried out by the manufacturer and yielded no significant observations, through modelling and measurements efforts while working towards this thesis, a phenomenon that could have led or contributed to the failure. VFTs at a live, operational 400kV Substation (un-named for confidentiality but termed throughout as Substation ‘A’) are quantified through both modelling and measurements. Significant progress in the modelling of VFTs and TEVs is demonstrated. Numerical Electromagnetic Analysis is shown to be most effective method in studying the behaviour of the GIS and earthing systems. Multiple NEA techniques are utilised, all solving a full-Maxwell’s equations through a Wave equation. The behaviour of the system (both internally and externally) is captured with great accuracy and lucidity, without the need to use analytic approximations or assumed parameters, which has traditionally been the case. Detailed models were built using equipment drawings from Substation ‘A’ for the GIB, spacer-flange assembly, double-elbow assembly, disconnector, gas to air bushing. Frequency and time domain behaviour is analysed and a potential contributor to the failure at Substation ‘A’ is identified. Furthermore, elements of the earthing system were evaluated for effectiveness in mitigating TEVs. The methods highlight some of flaws and inaccuracies that are present with existing ‘standard practice’ modelling efforts. The need for circuit-based modelling for VFT studies is apparent, as NEA techniques at very high frequencies are limited in their interaction with the wider system. Efforts are therefore made to enhance circuit-based models; utilising NEA methods and Vector Fitting to produce accurate, large bandwidth equivalent circuits, which demonstrate the computed frequency responses of the various GIS equipment types studied. Vector Fit models at lower orders of approximation are prone to unstable time domain responses, leading to numerical oscillations or even a complete divergence from a solution. A method was developed to identify model orders that demonstrate stability in the time domain, allowing the lowest model order of approximation to be selected, thereby reducing the additional computational requirements of very high orders of approximation, while retaining accuracy and stability in the time and frequency domains. The conversion process is augmented with a new method for identifying model orders that will be stable in the time domain. Several measurement techniques and sensors were developed to capture the entire cycle of transients associated with disconnector operations. Device prototypes were designed and optimised through NEA/circuit-based modelling, prior to undergoing laboratory-based measurements. Laboratory based testing was conducted using a custom built, half scale GIB, with impedance matching cones at each end to allow measurement and signal generating equipment to be connected with minimal interference. While, essential, laboratory-based measurements will never replicate the transient and high EMI environmental conditions seen at a live GIS, therefore, the bulk of the measurement efforts were focused on live measurements at Substation ‘A’. Throughout the course of this project several opportunities to undertake measurements were presented and a significant amount of data was recorded. Each measurement also identified areas for improvement of the measurement system

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Modelagem numérica 3D de problemas de compatibilidade eletromagnética utilizando o método TLM-TD

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica.Este trabalho está voltado ao estudo de fenômenos ligados à compatibilidade eletromagnética através do uso de modelos numéricos de discretização no domínio do tempo. O texto pode ser dividido em duas partes principais. A primeira apresenta uma comparação dos principais métodos empregados para a solução numérica de problemas da área e aprofunda-se na formulação do método TLM-TD (Transmission-line Modeling Method - Time Domain). Este método é detalhado em suas versões unidimensional, bidimensional e tridimensional. Especial cuidado é dedicado à formulação tridimensional, onde são abordados problemas como a heterogeneidade do meio, presença de perdas e tratamento de malhas irregulares. Uma segunda parte deste trabalho é dedicado à implementação, validação e aplicação de um algoritmo baseado na formulação tridimensional do método TLM-TD para a análise de problemas ligados à compatibilidade eletromagnética. A validação preliminar do algoritmo desenvolvido é feita através da comparação com valores analíticos para problemas de propagação de ondas em meios homogêneos e heterogêneos com perdas. O algoritmo assim validado, é então empregado na análise da efetividade de blindagem de gabinetes metálicos dotados de fendas (slots) e aberturas. Finalmente, são analisadas várias configurações de aterramento impulsivo, investigando-se fluxos de corrente e potenciais nos condutores e na superfície do solo. Vários destes casos têm seus resultados comparados com outras referências

    Protection of physically compact multiterminal DC power systems

    Get PDF
    The use of DC for primary power distribution has the potential to bring significant design, cost and efficiency benefits to microgrid, shipboard and aircraft applications. The integration of active converter technologies within these networks is a key enabler for these benefits to be realised, however their influence on an electrical network's fault response can lead to exceptionally demanding protection requirements. This represents a significant barrier to more widespread adoption of DC power distribution. The principle challenge within the field is to develop protection solutions which do not significantly detract from the advantages which DC networks offer. This objective leads the thesis to not only consider how the protection challenges may be overcome but also how this can be achieved in a manner which can benefit the overall design of a system, inclusive of various system design objectives. The thesis proposes that this objective can be achieved through the operation of network protection within the initial transient period following the occurrence of a fault. In seeking to achieve this aim, the work presented within this thesis makes a number of contributions. The thesis categorises converter type based on the components which influence their fault response and then presents an analysis of the natural fault response of compact multiterminal DC power distribution networks containing these converters. Key factors such as the peak magnitudes and formation times of fault current profiles are determined and quantified as a function of network parameters, enabling protection system operating requirements to be established. Secondary fault effects such as voltage transients are also identified and quantified to illustrate the impact of suboptimal protection system operation. The capabilities of different protection methods and technologies for achieving the proposed operating requirements are then analysed. Significant conclusions are: solid state breaking technologies are essential to achieving operating targets and severe limitations exist with the application of protection methods available within literature for this application. To overcome these shortfalls, novel fault detection approaches are proposed and analysed. These approaches enable fault detection time targets to be met as well as aid with the effective integration of future circuit breaking technologies
    corecore