307 research outputs found

    Design and testing of compact dual-band dual-polarized robust satellite navigation antenna arrays

    Get PDF
    Die steigende Nachfrage nach präzisen Positionierlösungen für hochautomatisiertes Fahren und sicherheitskritische Anwendungen führt zu der Verwendung von Array-basierten Satellitennavigationsempfängern, die aufgrund des verbesserten Diversity-Gewinns und der potentiellen Strahlformungsfähigkeit eine bessere Leistung aufweisen. Die Notwendigkeit, die Robustheit von Navigationsempfängern gegenüber Quellen von Signalstörungen, wie Mehrwegempfang, atmosphärische, sowie Jamming- und Spoofing, zu verbessern, verlangt, den Empfänger weiter auszubauen, um Polarisations- und Frequenz-Diversity auszunutzen. Das hieraus resultierende Design ist durch eine signifikante Zunahme der Hardware- und Softwarekomplexität gekennzeichnet. Diese Komplexität steigt noch mit dem Trend, den Navigationsempfänger zu miniaturisieren, um die Integration in Fahrzeugen oder mobilen Systemen zu erleichtern. Da die gegenseitige Verkopplung zwischen den Antennenelementen eines kompakten Antennen- Arrays steigt, verschlechtert sich deren Strahlungseffizienz und Polarisationsreinheit und damit die Systemrobustheit. In dieser Arbeit wird ein kompaktes, dualbandiges und dualpolarisiertes Antennenarray für einen Navigationsempfänger untersucht, schaltungstechnisch entworfen und aufgebaut, womit Array-, Frequenz-, und Polarisations-Diversity ermöglicht wird. Dies führt zu einer signifikant verbesserten Robustheit gegenüber den angesprochenen Störungen. Diese Arbeit umfasst das Design des dualbandigen und dualpolarisierten Patchantennenelements, das Design des kompakten Antennenarrays, das Studium der Kreuzpolarisationsquellen in Patchantennen, die Analyse des Einflusses der gegenseitigen Kopplung auf die Strahlungseffizienz und Polarisationsreinheit, und die Abschwächung beider Effekte durch eigenmode-basierten Entkopplungs- und Anpassungsnetzwerken. Darüber hinaus beinhaltet die Arbeit die Integration des Antennensystems mit einem HF-Frontend zur Leistungsverstärkung, Filterung und Signalkonvertierung der Satellitensignale. Die Arbeit umfasst auch die Integration mit einem Array-basierten digitalen Empfänger, in dem neben der Datenerfassung, auch die Richtungsschätzung, das Beamforming und die Anti-Jamming-Algorithmen implementiert wurden. Die Machbarkeit sowohl der Array-Diversity als auch der Polarisations-Diversity wurde in Automotive-related Feldmessungen bestätigt, insbesondere für Elevationswinkel unter 40 bzw. 60 Grad, wo der Einfluss des Mehrwegempfangs ausreichend hohe Pegel erreicht. Die Messungen bestätigten die Robustheit des Empfängers gegenüber Stör- Nutzsignalverhältnissen von bis zu 85 dB und übertrafen damit mehrere "State-of-the-Art" Empfänger.The increasing demand for accurate positioning solutions for highly-automated driving and safety-critical applications motivates the use of array-based satellite navigation receivers that feature better performance, due to the enhanced diversity gain and the potential beamforming capability. The need for improving the robustness of navigation receivers against sources of signal distortion such as multipath propagation, atmospheric impact, jamming, and spoofing violations requests to extend the receiver to exploit polarization and frequency diversities. The resulting design is challenged by the significant rise in hardware and software complexity. This complexity increases even more with the trend to miniaturize the navigation receiver, to ease the integration in vehicles or mobile systems, because mutual coupling rises between the radiating elements of the receiver, and deteriorates their radiation efficiencies and polarization purities, and hence degrades the system robustness. In this thesis, a compact dual-band dual-polarized array-based navigation receiver that uses array diversity, frequency diversity, and polarization diversity is studied and designed, to provide robustness against the different types of distortions. The main contributions of the presented work include the design of the dual-band dual-polarized patch antenna element, the design of the compact antenna array, the study of the cross-polarization sources in patch antennas, the analysis of the mutual coupling impact on radiation efficiency and polarization purity of radiating elements, and the mitigation of both impacts using eigenmode-based decoupling and matching networks. Furthermore, the work also involves the integration of the antenna system with an RF-IF front-end, developed in cooperation with IMMS GmbH, for power amplification, filtering, and down-converting. The dissertation covers also the integration with an array-based digital receiver, developed in cooperation with RWTH Aachen University and the German Aerospace Center (DLR), to implement data acquisition, direction-of-arrival estimation, beamforming, and anti-jamming algorithms. The feasibility of both the array diversity and the polarization diversity was confirmed in automotive-related field measurements, particularly for elevations below 40 and 60 degrees, respectively; i.e., at directions far from the main beam direction of the even mode of the array (at zenith), and where the impact of multipath propagation on strength and polarization of the signal reaches sufficient levels to disturb the receiver. Measurements proved the receiver robustness against jamming-to-signal ratios up to 85 dB, outperforming several state-of-the-art receivers described in literature

    GNSS Anti-Spoofing Defense Based on Cooperative Positioning

    Get PDF
    Radio navigation is of utmost importance in several application fields. Nowadays, many civil and professional applications massively rely on the Global Navigation Satellite System (GNSS) and related technologies to accurately estimate position and time. Existing GNSS-based systems are threatened by malicious attacks among which spoofing and meaconing constitute severe challenges to the receiver. Several of such GNSS systems constitute mass market applications and devices, and a threat to the GNSS receiver could have cascading effects at application levels and for interconnected systems. Networked GNSS receivers are in general ubiquitous because any receiver embedded in a complex system such as a smart device or smart connected cars can exploit network connectivity. This novel generation of valuable-performance GNSS receivers are prone both to standard RF spoofing attacks and to cyber-attacks conceived to hijack complex network based services such as DGNSS-based cooperative positioning. By means of a set of experimental tests, this paper highlights possible metrics to be checked to identify malicious attacks to the positioning and navigation systems in mass market connected devices. The network-based exchange of GNSS data such as GNSS raw measurements recently disclosed in Android smart devices is conceived in this work to offer the possibility to compare or combine such metrics to better identifies spoofing and meaconing attacks

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS

    Advanced Integration of GNSS and External Sensors for Autonomous Mobility Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    PNT cyber resilience : a Lab2Live observer based approach, Report 1 : GNSS resilience and identified vulnerabilities. Technical Report 1

    Get PDF
    The use of global navigation satellite systems (GNSS) such as GPS and Galileo are vital sources of positioning, navigation and timing (PNT) information for vehicles. This information is of critical importance for connected autonomous vehicles (CAVs) due to their dependence on this information for localisation, route planning and situational awareness. A downside to solely relying on GNSS for PNT is that the signal strength arriving from navigation satellites in space is weak and currently there is no authentication included in the civilian GNSS adopted in the automotive industry. This means that cyber-attacks against the GNSS signal via jamming or spoofing are attractive to adversaries due to the potentially high impact they can achieve. This report reviews the vulnerabilities of GNSS services for CAVs (a summary is shown in Figure 1), as well as detection and mitigating techniques, summarises the opinions on PNT cyber testing sourced from a select group of experts, and finishes with a description of the associated lab-based and real-world feasibility study and proposed research methodology

    The performance of hybrid GPS and GLONASS

    Get PDF
    In recent years, the market served by satellite positioning systems has expanded exponentially. It is stimulated by the needs of an ever increasing number and variety of scientific, business and leisure applications. The dominant system is the USA's GPS, or Global Positioning System. However, GPS is not a panacea for all positioning tasks, in any environmental situation. For example, two of the fastest growing applications, vehicle tracking and personal location, operate in an often harsh signal reception environment. This can be so severe that even with the current 29 working satellites, GPS may struggle to perform. In exceptional circumstances it can fail to provide a positioning service at all. The simplest way to improve the situation when signal reception is poor, is to add similar signals from alternative satellite systems. This has already been achieved by combining GPS with the Russian satellite positioning system, Global'naya Navigatsionnaya Sputnikova Sistema, abbreviated to GLONASS. The combination of GPS with GLONASS is referred to here as Hybrid. But how good is Hybrid relative to GPS, and how can performance be evaluated objectively? The research project presented here set out to answer this question, and to understand the situations in which Hybrid failed, and ask what solutions were then available to fulfil a positioning task. The problems associated with integrating one satellite positioning system with another, their potential inconsistencies and their impact on positioning errors were also examined. This field of research is relevant to Hybrid as defined here, and also to other mixed systems, for example GPS with EGNOS, a European geostationary satellite system, and GPS with Galileo, a proposed global system controlled by the Europeans. The issues were addressed from the viewpoint of practical usage of the positioning systems. Hence the many and varied experiments to quantify positioning performance using both static receivers, and a variety of platforms with wide ranging levels of vehicle dynamics. The capability of satellite positioning systems to work in the harshest environments, was tested in the proposed Olympic sport of bob skeleton. This involved the development of the acquisition system, and a number of programs. The latter were equally applicable to the ensuing work with road vehicles, and the quantitative assessment of positioning performance relative to a truth. The processes established to manipulate, import, and merge satellite based vehicle tracking data with Ordnance Survey digital mapping products, have already been used in four other projects within the School of Civil Engineering. The software to regularise positioning interval, smoothing processes, and to compare tracking data with a truth, have been similarly provided. Without major funding the outlook for GLONASS and hence Hybrid looks bleak, and it is predicted that without replenishment the constellation may fall to six satellites by the end of 2001. However as mentioned above, the issues identified, and ideas and software developed in this research, will be directly applicable to any future hybridisation of GPS with Galileo

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas

    Analysing the effects of sensor fusion, maps and trust models on autonomous vehicle satellite navigation positioning

    Get PDF
    This thesis analyzes the effects of maps, sensor fusion and trust models on autonomous vehicle satellite positioning. The aim is to analyze the localization improvements that commonly used sensors, technologies and techniques provide to autonomous vehicle positioning. This thesis includes both survey of localization techniques used by other research and their localization accuracy results as well as experimentation where the effects of different technologies and techniques on lateral position accuracy are reviewed. The requirements for safe autonomous driving are strict and while the performance of the average global navigation satellite system (GNSS) receiver alone may not prove to be adequate enough for accurate positioning, it may still provide valuable position data to an autonomous vehicle. For the vehicle, this position data may provide valuable information about the absolute position on the globe, it may improve localization accuracy through sensor fusion and it may act as an independent data source for sensor trust evaluation. Through empirical experimentation, the effects of sensor fusion and trust functions with an inertial measurement unit (IMU) on GNSS lateral position accuracy are measured and analyzed. The experimentation includes the measurements from both consumer-grade devices mounted on a traditional automobile and high-end devices of a truck that is capable of autonomous driving in a monitored environment. The maps and LIDAR measurements used in the experiments are prone to errors and are taken into account in the analysis of the data

    Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Get PDF
    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA)
    • …
    corecore